作为现代环境技术的一个组成部分,声学效果在预防和消除火灾中的应用

IF 1.4 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
V. Loboichenko, J. Wilk-Jakubowski, Grzegorz Wilk-Jakubowski, Radoslaw Harabin, R. Shevchenko, V. Strelets, A. Levterov, Alexandr Soshinskiy, N. Tregub, Oleksii Antoshkin
{"title":"作为现代环境技术的一个组成部分,声学效果在预防和消除火灾中的应用","authors":"V. Loboichenko, J. Wilk-Jakubowski, Grzegorz Wilk-Jakubowski, Radoslaw Harabin, R. Shevchenko, V. Strelets, A. Levterov, Alexandr Soshinskiy, N. Tregub, Oleksii Antoshkin","doi":"10.2478/rtuect-2022-0024","DOIUrl":null,"url":null,"abstract":"Abstract The paper studies the current state of the art in the use of acoustic effects in the prevention and elimination of fires. For this purpose, the literature review method was applied. The well-known approaches to fire extinguishing and their impact on the environment are considered. Multifaceted studies by a wide range of scientists on the possibilities of the acoustic effect in fire extinguishing are noted. The analysis of literary sources showed the negative impact of both the fires themselves and the majority of fire extinguishing agents on the environment. Variants of the use of the acoustic effect for the prevention and elimination of fires of various combustible substances are considered. The influence of the frequency of acoustic waves, scanning speed, power, and other acoustic parameters on flame extinguishing is noted. The possibilities of using a deep neural network for flame detection have been studied. The limitations and advantages of acoustic technology and further prospects for its development as an element of environmental technologies are shown.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Use of Acoustic Effects for the Prevention and Elimination of Fires as an Element of Modern Environmental Technologies\",\"authors\":\"V. Loboichenko, J. Wilk-Jakubowski, Grzegorz Wilk-Jakubowski, Radoslaw Harabin, R. Shevchenko, V. Strelets, A. Levterov, Alexandr Soshinskiy, N. Tregub, Oleksii Antoshkin\",\"doi\":\"10.2478/rtuect-2022-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper studies the current state of the art in the use of acoustic effects in the prevention and elimination of fires. For this purpose, the literature review method was applied. The well-known approaches to fire extinguishing and their impact on the environment are considered. Multifaceted studies by a wide range of scientists on the possibilities of the acoustic effect in fire extinguishing are noted. The analysis of literary sources showed the negative impact of both the fires themselves and the majority of fire extinguishing agents on the environment. Variants of the use of the acoustic effect for the prevention and elimination of fires of various combustible substances are considered. The influence of the frequency of acoustic waves, scanning speed, power, and other acoustic parameters on flame extinguishing is noted. The possibilities of using a deep neural network for flame detection have been studied. The limitations and advantages of acoustic technology and further prospects for its development as an element of environmental technologies are shown.\",\"PeriodicalId\":46053,\"journal\":{\"name\":\"Environmental and Climate Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Climate Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rtuect-2022-0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2022-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文研究了声学效应在火灾预防和消除中的应用现状。为此,我们采用了文献回顾法。考虑了众所周知的灭火方法及其对环境的影响。许多科学家对灭火中声效应的可能性进行了多方面的研究。对文献资料的分析显示了火灾本身和大多数灭火剂对环境的负面影响。考虑了声学效应用于预防和消除各种可燃物质火灾的各种变体。注意到声波频率、扫描速度、功率和其他声学参数对灭火的影响。研究了利用深度神经网络进行火焰探测的可能性。指出了声学技术的局限性和优势,并对其作为环境技术的组成部分的进一步发展进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Use of Acoustic Effects for the Prevention and Elimination of Fires as an Element of Modern Environmental Technologies
Abstract The paper studies the current state of the art in the use of acoustic effects in the prevention and elimination of fires. For this purpose, the literature review method was applied. The well-known approaches to fire extinguishing and their impact on the environment are considered. Multifaceted studies by a wide range of scientists on the possibilities of the acoustic effect in fire extinguishing are noted. The analysis of literary sources showed the negative impact of both the fires themselves and the majority of fire extinguishing agents on the environment. Variants of the use of the acoustic effect for the prevention and elimination of fires of various combustible substances are considered. The influence of the frequency of acoustic waves, scanning speed, power, and other acoustic parameters on flame extinguishing is noted. The possibilities of using a deep neural network for flame detection have been studied. The limitations and advantages of acoustic technology and further prospects for its development as an element of environmental technologies are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental and Climate Technologies
Environmental and Climate Technologies GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
3.10
自引率
28.60%
发文量
0
审稿时长
16 weeks
期刊介绍: Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信