{"title":"Prydz Bay地区Vestfold Hills基性岩脉的地球化学和古地磁特征:东南极洲与原印度古元古代联系的意义","authors":"M. Pandit, A. Pivarunas, J. Meert","doi":"10.1144/SP518-2021-33","DOIUrl":null,"url":null,"abstract":"Abstract The Archean age granite gneiss basement along the Prydz Bay coastline in East Antarctica hosts north–south-, east–west-, NE–SW- and NW–SE-trending mafic dyke swarms in the Vestfold Hills region that intruded between 2420 and 1250 Ma. The orientations of dykes do not show a direct correlation with the dyke geochemistry. Instead the dykes can be broadly discriminated into high-Mg and Fe-rich tholeiites. The former type is more siliceous, large ion lithophile elements (LILEs), high field strength elements (HFSEs) and light REEs enriched crystallized from a fractionated melt with a notable crustal component or fluid enrichment through the previous subduction process. The Fe-rich tholeiites are less siliceous, have lower abundances of LILEs and REEs, that indicates derivation from an undifferentiated, primitive melt. The geochemical characteristics of both types underline a shallow level and a high degree of melting in the majority of cases, and a broadly island arc basalt (IAB) affinity. Palaeomagnetic analysis of hand samples shows directional groups consistent with geochemical groupings. The Vestfold Hills dykes show a possible linkage with the coeval mafic dykes in the Eastern Dharwar and Bastar cratons of the South Indian Block, based on the similarity in the Paleoproterozoic palaeolatitudes.","PeriodicalId":22055,"journal":{"name":"Special Publications","volume":"24 1","pages":"149 - 171"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Geochemical and palaeomagnetic characteristics of the Vestfold Hills mafic dykes in the Prydz Bay region: implications of a Paleoproterozoic connection between East Antarctica and Proto-India\",\"authors\":\"M. Pandit, A. Pivarunas, J. Meert\",\"doi\":\"10.1144/SP518-2021-33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Archean age granite gneiss basement along the Prydz Bay coastline in East Antarctica hosts north–south-, east–west-, NE–SW- and NW–SE-trending mafic dyke swarms in the Vestfold Hills region that intruded between 2420 and 1250 Ma. The orientations of dykes do not show a direct correlation with the dyke geochemistry. Instead the dykes can be broadly discriminated into high-Mg and Fe-rich tholeiites. The former type is more siliceous, large ion lithophile elements (LILEs), high field strength elements (HFSEs) and light REEs enriched crystallized from a fractionated melt with a notable crustal component or fluid enrichment through the previous subduction process. The Fe-rich tholeiites are less siliceous, have lower abundances of LILEs and REEs, that indicates derivation from an undifferentiated, primitive melt. The geochemical characteristics of both types underline a shallow level and a high degree of melting in the majority of cases, and a broadly island arc basalt (IAB) affinity. Palaeomagnetic analysis of hand samples shows directional groups consistent with geochemical groupings. The Vestfold Hills dykes show a possible linkage with the coeval mafic dykes in the Eastern Dharwar and Bastar cratons of the South Indian Block, based on the similarity in the Paleoproterozoic palaeolatitudes.\",\"PeriodicalId\":22055,\"journal\":{\"name\":\"Special Publications\",\"volume\":\"24 1\",\"pages\":\"149 - 171\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1144/SP518-2021-33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1144/SP518-2021-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geochemical and palaeomagnetic characteristics of the Vestfold Hills mafic dykes in the Prydz Bay region: implications of a Paleoproterozoic connection between East Antarctica and Proto-India
Abstract The Archean age granite gneiss basement along the Prydz Bay coastline in East Antarctica hosts north–south-, east–west-, NE–SW- and NW–SE-trending mafic dyke swarms in the Vestfold Hills region that intruded between 2420 and 1250 Ma. The orientations of dykes do not show a direct correlation with the dyke geochemistry. Instead the dykes can be broadly discriminated into high-Mg and Fe-rich tholeiites. The former type is more siliceous, large ion lithophile elements (LILEs), high field strength elements (HFSEs) and light REEs enriched crystallized from a fractionated melt with a notable crustal component or fluid enrichment through the previous subduction process. The Fe-rich tholeiites are less siliceous, have lower abundances of LILEs and REEs, that indicates derivation from an undifferentiated, primitive melt. The geochemical characteristics of both types underline a shallow level and a high degree of melting in the majority of cases, and a broadly island arc basalt (IAB) affinity. Palaeomagnetic analysis of hand samples shows directional groups consistent with geochemical groupings. The Vestfold Hills dykes show a possible linkage with the coeval mafic dykes in the Eastern Dharwar and Bastar cratons of the South Indian Block, based on the similarity in the Paleoproterozoic palaeolatitudes.