Elysa Nensy Irawan, Sandro Sitompul, K. Yamashita, G. Fujita
{"title":"转子半径比对Savonius-Darrieus NREL S809混合垂直轴风力机性能的影响","authors":"Elysa Nensy Irawan, Sandro Sitompul, K. Yamashita, G. Fujita","doi":"10.21926/jept.2301001","DOIUrl":null,"url":null,"abstract":"This research aims to know the effect of the Rotor Radius Ratio on the performance of the hybrid Vertical Axis Wind Turbine Savonius-Darrieus NREL S809 model using the Computational Fluid Dynamics method. Two-bladed Savonius is used as an internal rotor, and three-bladed Darrieus NREL S809 as an external rotor. Turbine model performance is analyzed through the value of the Moment Coefficient and Power Coefficient. The result shows that the increase in the Rotor Radius Ratio value causes an increase in the initial Moment Coefficient but a decrease in the maximum Power Coefficient value. At the initial TSR, the Rotor Radius Ratio 0.5 model has the best Moment Coefficient value among all variations but has the lowest maximum Power Coefficient value.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Effect of Rotor Radius Ratio on The Performance of Hybrid Vertical Axis Wind Turbine Savonius-Darrieus NREL S809\",\"authors\":\"Elysa Nensy Irawan, Sandro Sitompul, K. Yamashita, G. Fujita\",\"doi\":\"10.21926/jept.2301001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to know the effect of the Rotor Radius Ratio on the performance of the hybrid Vertical Axis Wind Turbine Savonius-Darrieus NREL S809 model using the Computational Fluid Dynamics method. Two-bladed Savonius is used as an internal rotor, and three-bladed Darrieus NREL S809 as an external rotor. Turbine model performance is analyzed through the value of the Moment Coefficient and Power Coefficient. The result shows that the increase in the Rotor Radius Ratio value causes an increase in the initial Moment Coefficient but a decrease in the maximum Power Coefficient value. At the initial TSR, the Rotor Radius Ratio 0.5 model has the best Moment Coefficient value among all variations but has the lowest maximum Power Coefficient value.\",\"PeriodicalId\":53427,\"journal\":{\"name\":\"Journal of Nuclear Energy Science and Power Generation Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Energy Science and Power Generation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/jept.2301001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Energy Science and Power Generation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/jept.2301001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
The Effect of Rotor Radius Ratio on The Performance of Hybrid Vertical Axis Wind Turbine Savonius-Darrieus NREL S809
This research aims to know the effect of the Rotor Radius Ratio on the performance of the hybrid Vertical Axis Wind Turbine Savonius-Darrieus NREL S809 model using the Computational Fluid Dynamics method. Two-bladed Savonius is used as an internal rotor, and three-bladed Darrieus NREL S809 as an external rotor. Turbine model performance is analyzed through the value of the Moment Coefficient and Power Coefficient. The result shows that the increase in the Rotor Radius Ratio value causes an increase in the initial Moment Coefficient but a decrease in the maximum Power Coefficient value. At the initial TSR, the Rotor Radius Ratio 0.5 model has the best Moment Coefficient value among all variations but has the lowest maximum Power Coefficient value.