{"title":"基于小波熵特征的递归神经网络自动检测癫痫发作","authors":"S. Pravin Kumar, N. Sriraam, P. Benakop","doi":"10.1109/TENCON.2008.4766836","DOIUrl":null,"url":null,"abstract":"Electroencephalograms (EEG) are the brain signals that provide us the valuable information about the normal or epileptic state of the brain. In this paper the EEG signals were characterized by wavelet, sample and spectral entropy approach and the recurrent neural network classifier is used for the automated detection of epileptic seizures.","PeriodicalId":22230,"journal":{"name":"TENCON 2008 - 2008 IEEE Region 10 Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Automated detection of epileptic seizures using wavelet entropy feature with recurrent neural network classifier\",\"authors\":\"S. Pravin Kumar, N. Sriraam, P. Benakop\",\"doi\":\"10.1109/TENCON.2008.4766836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalograms (EEG) are the brain signals that provide us the valuable information about the normal or epileptic state of the brain. In this paper the EEG signals were characterized by wavelet, sample and spectral entropy approach and the recurrent neural network classifier is used for the automated detection of epileptic seizures.\",\"PeriodicalId\":22230,\"journal\":{\"name\":\"TENCON 2008 - 2008 IEEE Region 10 Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2008 - 2008 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2008.4766836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2008 - 2008 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2008.4766836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated detection of epileptic seizures using wavelet entropy feature with recurrent neural network classifier
Electroencephalograms (EEG) are the brain signals that provide us the valuable information about the normal or epileptic state of the brain. In this paper the EEG signals were characterized by wavelet, sample and spectral entropy approach and the recurrent neural network classifier is used for the automated detection of epileptic seizures.