基于小波熵特征的递归神经网络自动检测癫痫发作

S. Pravin Kumar, N. Sriraam, P. Benakop
{"title":"基于小波熵特征的递归神经网络自动检测癫痫发作","authors":"S. Pravin Kumar, N. Sriraam, P. Benakop","doi":"10.1109/TENCON.2008.4766836","DOIUrl":null,"url":null,"abstract":"Electroencephalograms (EEG) are the brain signals that provide us the valuable information about the normal or epileptic state of the brain. In this paper the EEG signals were characterized by wavelet, sample and spectral entropy approach and the recurrent neural network classifier is used for the automated detection of epileptic seizures.","PeriodicalId":22230,"journal":{"name":"TENCON 2008 - 2008 IEEE Region 10 Conference","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Automated detection of epileptic seizures using wavelet entropy feature with recurrent neural network classifier\",\"authors\":\"S. Pravin Kumar, N. Sriraam, P. Benakop\",\"doi\":\"10.1109/TENCON.2008.4766836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalograms (EEG) are the brain signals that provide us the valuable information about the normal or epileptic state of the brain. In this paper the EEG signals were characterized by wavelet, sample and spectral entropy approach and the recurrent neural network classifier is used for the automated detection of epileptic seizures.\",\"PeriodicalId\":22230,\"journal\":{\"name\":\"TENCON 2008 - 2008 IEEE Region 10 Conference\",\"volume\":\"1 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2008 - 2008 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2008.4766836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2008 - 2008 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2008.4766836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

脑电图(EEG)是一种大脑信号,它为我们提供了关于大脑正常或癫痫状态的宝贵信息。本文采用小波、样本和谱熵方法对脑电图信号进行表征,并采用递归神经网络分类器对癫痫发作进行自动检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated detection of epileptic seizures using wavelet entropy feature with recurrent neural network classifier
Electroencephalograms (EEG) are the brain signals that provide us the valuable information about the normal or epileptic state of the brain. In this paper the EEG signals were characterized by wavelet, sample and spectral entropy approach and the recurrent neural network classifier is used for the automated detection of epileptic seizures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信