在欧几里得4空间中的f-纠偏曲线上

Pub Date : 2021-08-01 DOI:10.2478/ausm-2021-0011
Zafar Iqbal, J. Sengupta
{"title":"在欧几里得4空间中的f-纠偏曲线上","authors":"Zafar Iqbal, J. Sengupta","doi":"10.2478/ausm-2021-0011","DOIUrl":null,"url":null,"abstract":"Abstract A rectifying curve in the Euclidean 4-space 𝔼4 is defined as an arc length parametrized curve γ in 𝔼4 such that its position vector always lies in its rectifying space (i.e., the orthogonal complement Nγ ˔ of its principal normal vector field Nγ) in 𝔼4. In this paper, we introduce the notion of an f-rectifying curve in 𝔼4 as a curve γ in 𝔼4 parametrized by its arc length s such that its f-position vector γf, defined by γf (s) = ∫ f(s)dγ for all s, always lies in its rectifying space in 𝔼4, where f is a nowhere vanishing integrable function in parameter s of the curve γ. Also, we characterize and classify such curves in 𝔼4.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On f-rectifying curves in the Euclidean 4-space\",\"authors\":\"Zafar Iqbal, J. Sengupta\",\"doi\":\"10.2478/ausm-2021-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A rectifying curve in the Euclidean 4-space 𝔼4 is defined as an arc length parametrized curve γ in 𝔼4 such that its position vector always lies in its rectifying space (i.e., the orthogonal complement Nγ ˔ of its principal normal vector field Nγ) in 𝔼4. In this paper, we introduce the notion of an f-rectifying curve in 𝔼4 as a curve γ in 𝔼4 parametrized by its arc length s such that its f-position vector γf, defined by γf (s) = ∫ f(s)dγ for all s, always lies in its rectifying space in 𝔼4, where f is a nowhere vanishing integrable function in parameter s of the curve γ. Also, we characterize and classify such curves in 𝔼4.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2021-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2021-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

欧几里得4空间𝔼4中的校正曲线定义为𝔼4中的弧长参数化曲线γ,其位置向量始终位于其校正空间(即其主法向量场Nγ的正交补Nγ˔)𝔼4中。在本文中,我们引入了𝔼4中的f-校正曲线的概念,即𝔼4中的曲线γ被其弧长s参数化,使得它的f位置向量γf,定义为γf (s) =∫f(s)dγ,对于所有s,总是位于𝔼4中的校正空间,其中f是曲线γ在参数s中的无处消失的可积函数。此外,我们在𝔼4中对这些曲线进行了表征和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On f-rectifying curves in the Euclidean 4-space
Abstract A rectifying curve in the Euclidean 4-space 𝔼4 is defined as an arc length parametrized curve γ in 𝔼4 such that its position vector always lies in its rectifying space (i.e., the orthogonal complement Nγ ˔ of its principal normal vector field Nγ) in 𝔼4. In this paper, we introduce the notion of an f-rectifying curve in 𝔼4 as a curve γ in 𝔼4 parametrized by its arc length s such that its f-position vector γf, defined by γf (s) = ∫ f(s)dγ for all s, always lies in its rectifying space in 𝔼4, where f is a nowhere vanishing integrable function in parameter s of the curve γ. Also, we characterize and classify such curves in 𝔼4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信