{"title":"有限维希尔伯特空间中的哈代不等式","authors":"D. Dimitrov, I. Gadjev, G. Nikolov, R. Uluchev","doi":"10.1090/PROC/15467","DOIUrl":null,"url":null,"abstract":"We study the behaviour of the smallest possible constants $d_n$ and $c_n$ in Hardy's inequalities $$ \\sum_{k=1}^{n}\\Big(\\frac{1}{k}\\sum_{j=1}^{k}a_j\\Big)^2\\leq d_n\\,\\sum_{k=1}^{n}a_k^2, \\qquad (a_1,\\ldots,a_n) \\in \\mathbb{R}^n $$ and $$ \\int_{0}^{\\infty}\\Bigg(\\frac{1}{x}\\int\\limits_{0}^{x}f(t)\\,dt\\Bigg)^2 dx \\leq c_n \\int_{0}^{\\infty} f^2(x)\\,dx, \\ \\ f\\in \\mathcal{H}_n, $$ for the finite dimensional spaces $\\mathbb{R}^n$ and $\\mathcal{H}_n:=\\{f\\,:\\, \\int_0^x f(t) dt =e^{-x/2}\\,p(x)\\ :\\ p\\in \\mathcal{P}_n, p(0)=0\\}$, where $\\mathcal{P}_n$ is the set of real-valued algebraic polynomials of degree not exceeding $n$. The constants $d_n$ and $c_n$ are identified as the smallest eigenvalues of certain Jacobi matrices and the two-sided estimates for $d_n$ and $c_n$ of the form $$ 4-\\frac{c}{\\ln n} 0\\, $$ are established.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hardy’s inequalities in finite dimensional Hilbert spaces\",\"authors\":\"D. Dimitrov, I. Gadjev, G. Nikolov, R. Uluchev\",\"doi\":\"10.1090/PROC/15467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the behaviour of the smallest possible constants $d_n$ and $c_n$ in Hardy's inequalities $$ \\\\sum_{k=1}^{n}\\\\Big(\\\\frac{1}{k}\\\\sum_{j=1}^{k}a_j\\\\Big)^2\\\\leq d_n\\\\,\\\\sum_{k=1}^{n}a_k^2, \\\\qquad (a_1,\\\\ldots,a_n) \\\\in \\\\mathbb{R}^n $$ and $$ \\\\int_{0}^{\\\\infty}\\\\Bigg(\\\\frac{1}{x}\\\\int\\\\limits_{0}^{x}f(t)\\\\,dt\\\\Bigg)^2 dx \\\\leq c_n \\\\int_{0}^{\\\\infty} f^2(x)\\\\,dx, \\\\ \\\\ f\\\\in \\\\mathcal{H}_n, $$ for the finite dimensional spaces $\\\\mathbb{R}^n$ and $\\\\mathcal{H}_n:=\\\\{f\\\\,:\\\\, \\\\int_0^x f(t) dt =e^{-x/2}\\\\,p(x)\\\\ :\\\\ p\\\\in \\\\mathcal{P}_n, p(0)=0\\\\}$, where $\\\\mathcal{P}_n$ is the set of real-valued algebraic polynomials of degree not exceeding $n$. The constants $d_n$ and $c_n$ are identified as the smallest eigenvalues of certain Jacobi matrices and the two-sided estimates for $d_n$ and $c_n$ of the form $$ 4-\\\\frac{c}{\\\\ln n} 0\\\\, $$ are established.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PROC/15467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/15467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hardy’s inequalities in finite dimensional Hilbert spaces
We study the behaviour of the smallest possible constants $d_n$ and $c_n$ in Hardy's inequalities $$ \sum_{k=1}^{n}\Big(\frac{1}{k}\sum_{j=1}^{k}a_j\Big)^2\leq d_n\,\sum_{k=1}^{n}a_k^2, \qquad (a_1,\ldots,a_n) \in \mathbb{R}^n $$ and $$ \int_{0}^{\infty}\Bigg(\frac{1}{x}\int\limits_{0}^{x}f(t)\,dt\Bigg)^2 dx \leq c_n \int_{0}^{\infty} f^2(x)\,dx, \ \ f\in \mathcal{H}_n, $$ for the finite dimensional spaces $\mathbb{R}^n$ and $\mathcal{H}_n:=\{f\,:\, \int_0^x f(t) dt =e^{-x/2}\,p(x)\ :\ p\in \mathcal{P}_n, p(0)=0\}$, where $\mathcal{P}_n$ is the set of real-valued algebraic polynomials of degree not exceeding $n$. The constants $d_n$ and $c_n$ are identified as the smallest eigenvalues of certain Jacobi matrices and the two-sided estimates for $d_n$ and $c_n$ of the form $$ 4-\frac{c}{\ln n} 0\, $$ are established.