媒体关注对股票非流动性的影响:来自全球金融科技行业的证据

Q4 Social Sciences
E. Gaar, Valentin Moritz, D. Schiereck
{"title":"媒体关注对股票非流动性的影响:来自全球金融科技行业的证据","authors":"E. Gaar, Valentin Moritz, D. Schiereck","doi":"10.3790/ccm.54.4.589","DOIUrl":null,"url":null,"abstract":"\n As a result of technological innovations in data processing, the exploitation of Internet usage data in relation to search engines or social networks is becoming increasingly intriguing for understanding and anticipating stock market movements. We analyze the impact of three alternative investor attention variables, i. e. Google search volume, Wikipedia page views, and stock market-relevant news on the rapidly growing FinTech sector. The result of the simultaneous correlation analysis reveals a highly significant correlation between the trading activities of the FinTech sector and the three investor attention variables. The time-delayed regression analysis complements the results by identifying substantial changes of the effects within one week considering the order of magnitude and sign. Furthermore, multivariate regression analysis highlights that the explanatory power for future stock trading activities and illiquidity primarily depends on Google search volume and stock market-relevant news volume, while the simultaneous correlations are best explained by the number of visits to the corresponding Wikipedia page.","PeriodicalId":36966,"journal":{"name":"Credit and Capital Markets","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Impact of Media Attention on the Illiquidity of Stocks: Evidence from the Global FinTech Sector\",\"authors\":\"E. Gaar, Valentin Moritz, D. Schiereck\",\"doi\":\"10.3790/ccm.54.4.589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As a result of technological innovations in data processing, the exploitation of Internet usage data in relation to search engines or social networks is becoming increasingly intriguing for understanding and anticipating stock market movements. We analyze the impact of three alternative investor attention variables, i. e. Google search volume, Wikipedia page views, and stock market-relevant news on the rapidly growing FinTech sector. The result of the simultaneous correlation analysis reveals a highly significant correlation between the trading activities of the FinTech sector and the three investor attention variables. The time-delayed regression analysis complements the results by identifying substantial changes of the effects within one week considering the order of magnitude and sign. Furthermore, multivariate regression analysis highlights that the explanatory power for future stock trading activities and illiquidity primarily depends on Google search volume and stock market-relevant news volume, while the simultaneous correlations are best explained by the number of visits to the corresponding Wikipedia page.\",\"PeriodicalId\":36966,\"journal\":{\"name\":\"Credit and Capital Markets\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Credit and Capital Markets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3790/ccm.54.4.589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Credit and Capital Markets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3790/ccm.54.4.589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 2

摘要

由于数据处理方面的技术创新,利用与搜索引擎或社交网络相关的互联网使用数据,对于理解和预测股市走势正变得越来越有吸引力。我们分析了三个可供选择的投资者关注变量的影响,即:谷歌搜索量,维基百科页面浏览量,以及快速增长的金融科技行业的股市相关新闻。同时相关分析的结果显示,金融科技行业的交易活动与三个投资者关注变量之间存在高度显著的相关性。考虑到数量级和符号,延迟回归分析通过识别一周内效果的实质性变化来补充结果。此外,多元回归分析强调,未来股票交易活动和非流动性的解释力主要取决于谷歌搜索量和股票市场相关新闻量,而同时的相关性最好通过访问相应维基百科页面的次数来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Impact of Media Attention on the Illiquidity of Stocks: Evidence from the Global FinTech Sector
As a result of technological innovations in data processing, the exploitation of Internet usage data in relation to search engines or social networks is becoming increasingly intriguing for understanding and anticipating stock market movements. We analyze the impact of three alternative investor attention variables, i. e. Google search volume, Wikipedia page views, and stock market-relevant news on the rapidly growing FinTech sector. The result of the simultaneous correlation analysis reveals a highly significant correlation between the trading activities of the FinTech sector and the three investor attention variables. The time-delayed regression analysis complements the results by identifying substantial changes of the effects within one week considering the order of magnitude and sign. Furthermore, multivariate regression analysis highlights that the explanatory power for future stock trading activities and illiquidity primarily depends on Google search volume and stock market-relevant news volume, while the simultaneous correlations are best explained by the number of visits to the corresponding Wikipedia page.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Credit and Capital Markets
Credit and Capital Markets Social Sciences-Law
CiteScore
0.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信