移动计算设备中电池感知随机QoS提升

Hao Shen, Qiuwen Chen, Qinru Qiu
{"title":"移动计算设备中电池感知随机QoS提升","authors":"Hao Shen, Qiuwen Chen, Qinru Qiu","doi":"10.5555/2616606.2616818","DOIUrl":null,"url":null,"abstract":"Mobile computing has been weaved into everyday lives to a great extend. Their usage is clearly imprinted with user's personal signature. The ability to learn such signature enables immense potential in workload prediction and resource management. In this work, we investigate the user behavior modeling and apply the model for energy management. Our goal is to maximize the quality of service (QoS) provided by the mobile device (i.e., smartphone), while keep the risk of battery depletion below a given threshold. A Markov Decision Process (MDP) is constructed from history user behavior. The optimal management policy is solved using linear programing. Simulations based on real user traces validate that, compared to existing battery energy management techniques, the stochastic control performs better in boosting the mobile devices' QoS without significantly increasing the chance of battery depletion.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"12 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Battery aware stochastic QoS boosting in mobile computing devices\",\"authors\":\"Hao Shen, Qiuwen Chen, Qinru Qiu\",\"doi\":\"10.5555/2616606.2616818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile computing has been weaved into everyday lives to a great extend. Their usage is clearly imprinted with user's personal signature. The ability to learn such signature enables immense potential in workload prediction and resource management. In this work, we investigate the user behavior modeling and apply the model for energy management. Our goal is to maximize the quality of service (QoS) provided by the mobile device (i.e., smartphone), while keep the risk of battery depletion below a given threshold. A Markov Decision Process (MDP) is constructed from history user behavior. The optimal management policy is solved using linear programing. Simulations based on real user traces validate that, compared to existing battery energy management techniques, the stochastic control performs better in boosting the mobile devices' QoS without significantly increasing the chance of battery depletion.\",\"PeriodicalId\":6550,\"journal\":{\"name\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"12 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/2616606.2616818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2616606.2616818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

移动计算已经在很大程度上融入了人们的日常生活。它们的使用清楚地印着用户的个人签名。学习这种签名的能力在工作负载预测和资源管理方面具有巨大的潜力。在这项工作中,我们研究了用户行为建模,并将该模型应用于能源管理。我们的目标是最大限度地提高移动设备(即智能手机)提供的服务质量(QoS),同时将电池耗尽的风险保持在给定阈值以下。基于历史用户行为构造马尔可夫决策过程(MDP)。采用线性规划方法求解最优管理策略。基于真实用户跟踪的仿真验证了,与现有的电池能量管理技术相比,随机控制在提高移动设备的QoS方面表现更好,而不会显著增加电池耗尽的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Battery aware stochastic QoS boosting in mobile computing devices
Mobile computing has been weaved into everyday lives to a great extend. Their usage is clearly imprinted with user's personal signature. The ability to learn such signature enables immense potential in workload prediction and resource management. In this work, we investigate the user behavior modeling and apply the model for energy management. Our goal is to maximize the quality of service (QoS) provided by the mobile device (i.e., smartphone), while keep the risk of battery depletion below a given threshold. A Markov Decision Process (MDP) is constructed from history user behavior. The optimal management policy is solved using linear programing. Simulations based on real user traces validate that, compared to existing battery energy management techniques, the stochastic control performs better in boosting the mobile devices' QoS without significantly increasing the chance of battery depletion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信