弱非坍缩RCD空间是强非坍缩空间

IF 1.2 1区 数学 Q1 MATHEMATICS
Camillo Brena, N. Gigli, Shouhei Honda, Xingyu Zhu
{"title":"弱非坍缩RCD空间是强非坍缩空间","authors":"Camillo Brena, N. Gigli, Shouhei Honda, Xingyu Zhu","doi":"10.1515/crelle-2022-0071","DOIUrl":null,"url":null,"abstract":"Abstract We prove that any weakly non-collapsed RCD space is actually non-collapsed, up to a renormalization of the measure. This confirms a conjecture raised by De Philippis and the second named author in full generality. One of the auxiliary results of independent interest that we obtain is about the link between the properties tr ⁡ ( Hess ⁡ f ) = Δ ⁢ f \\operatorname{tr}(\\operatorname{Hess}f)=\\Delta f on U ⊆ X U\\subseteq{\\mathsf{X}} for every 𝑓 sufficiently regular, m = c ⁢ H n \\mathfrak{m}=c\\mathscr{H}^{n} on U ⊆ X U\\subseteq{\\mathsf{X}} for some c > 0 c>0 , where U ⊆ X U\\subseteq{\\mathsf{X}} is open and 𝖷 is a – possibly collapsed – RCD space of essential dimension 𝑛.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Weakly non-collapsed RCD spaces are strongly non-collapsed\",\"authors\":\"Camillo Brena, N. Gigli, Shouhei Honda, Xingyu Zhu\",\"doi\":\"10.1515/crelle-2022-0071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove that any weakly non-collapsed RCD space is actually non-collapsed, up to a renormalization of the measure. This confirms a conjecture raised by De Philippis and the second named author in full generality. One of the auxiliary results of independent interest that we obtain is about the link between the properties tr ⁡ ( Hess ⁡ f ) = Δ ⁢ f \\\\operatorname{tr}(\\\\operatorname{Hess}f)=\\\\Delta f on U ⊆ X U\\\\subseteq{\\\\mathsf{X}} for every 𝑓 sufficiently regular, m = c ⁢ H n \\\\mathfrak{m}=c\\\\mathscr{H}^{n} on U ⊆ X U\\\\subseteq{\\\\mathsf{X}} for some c > 0 c>0 , where U ⊆ X U\\\\subseteq{\\\\mathsf{X}} is open and 𝖷 is a – possibly collapsed – RCD space of essential dimension 𝑛.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2022-0071\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0071","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

摘要

摘要证明了任何弱非坍缩RCD空间实际上是非坍缩的,直到测度的重整化。这证实了德菲利比斯和第二个作者提出的猜想。的一个辅助的独立利益获得的结果是关于属性之间的联系tr⁡(Hess⁡f) =Δ⁢f \ operatorname {tr} (\ operatorname{赫斯}f) = \δf在U⊆X \ subseteq {\ mathsf {X}}每𝑓足够普通,m = c⁢H n \ mathfrak {m} = c \ mathscr {H} ^ {n}在U⊆X \ subseteq {\ mathsf {X}}一些c > 0 c > 0,在U⊆X \ subseteq {\ mathsf {X}}是开放和𝖷-可能倒塌𝑛RCD空间的基本维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly non-collapsed RCD spaces are strongly non-collapsed
Abstract We prove that any weakly non-collapsed RCD space is actually non-collapsed, up to a renormalization of the measure. This confirms a conjecture raised by De Philippis and the second named author in full generality. One of the auxiliary results of independent interest that we obtain is about the link between the properties tr ⁡ ( Hess ⁡ f ) = Δ ⁢ f \operatorname{tr}(\operatorname{Hess}f)=\Delta f on U ⊆ X U\subseteq{\mathsf{X}} for every 𝑓 sufficiently regular, m = c ⁢ H n \mathfrak{m}=c\mathscr{H}^{n} on U ⊆ X U\subseteq{\mathsf{X}} for some c > 0 c>0 , where U ⊆ X U\subseteq{\mathsf{X}} is open and 𝖷 is a – possibly collapsed – RCD space of essential dimension 𝑛.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信