{"title":"冷轧16cr-5ni超马氏体不锈钢的静态应变时效聚类与分配","authors":"Hojun Gwon, Sung-Ho Kim, J. Jeon, Sung-Joon Kim","doi":"10.2139/ssrn.3692029","DOIUrl":null,"url":null,"abstract":"Abstract Static strain aging behavior of cold-rolled 16Cr-5Ni supermartensitic stainless steel was investigated after it had been aged for 30 min at 400°C. In uniaxial tensile tests of 20% cold-rolled specimens, increase of yield strength to ~300 MPa and decrease of strain hardening rate were observed in the aged specimen, compared to the as-rolled specimen. In interrupted tensile tests, delayed martensitic transformation was observed in the aged specimen. Dilatometry analysis detected volume shrinkage during the 30 min holding period at 400°C indicating partitioning of carbon (C) from α’ martensite to austenite. The clustering of C in α’ martensite was confirmed by impulse internal friction technique with observation of Cottrell atmosphere formation. 3D atom probe tomography analysis revealed partitioning of C atoms into austenite and clustering of C atoms in the α’ martensite. The remarkable increase of yield strength was attributed to redistribution of C atoms during the aging treatment.","PeriodicalId":7765,"journal":{"name":"AMI: Scripta Materialia","volume":"128 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"C Clustering and Partitioning by Static Strain Aging in Cold-Rolled 16cr-5ni Supermartensitic Stainless Steel\",\"authors\":\"Hojun Gwon, Sung-Ho Kim, J. Jeon, Sung-Joon Kim\",\"doi\":\"10.2139/ssrn.3692029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Static strain aging behavior of cold-rolled 16Cr-5Ni supermartensitic stainless steel was investigated after it had been aged for 30 min at 400°C. In uniaxial tensile tests of 20% cold-rolled specimens, increase of yield strength to ~300 MPa and decrease of strain hardening rate were observed in the aged specimen, compared to the as-rolled specimen. In interrupted tensile tests, delayed martensitic transformation was observed in the aged specimen. Dilatometry analysis detected volume shrinkage during the 30 min holding period at 400°C indicating partitioning of carbon (C) from α’ martensite to austenite. The clustering of C in α’ martensite was confirmed by impulse internal friction technique with observation of Cottrell atmosphere formation. 3D atom probe tomography analysis revealed partitioning of C atoms into austenite and clustering of C atoms in the α’ martensite. The remarkable increase of yield strength was attributed to redistribution of C atoms during the aging treatment.\",\"PeriodicalId\":7765,\"journal\":{\"name\":\"AMI: Scripta Materialia\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMI: Scripta Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3692029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMI: Scripta Materialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3692029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
C Clustering and Partitioning by Static Strain Aging in Cold-Rolled 16cr-5ni Supermartensitic Stainless Steel
Abstract Static strain aging behavior of cold-rolled 16Cr-5Ni supermartensitic stainless steel was investigated after it had been aged for 30 min at 400°C. In uniaxial tensile tests of 20% cold-rolled specimens, increase of yield strength to ~300 MPa and decrease of strain hardening rate were observed in the aged specimen, compared to the as-rolled specimen. In interrupted tensile tests, delayed martensitic transformation was observed in the aged specimen. Dilatometry analysis detected volume shrinkage during the 30 min holding period at 400°C indicating partitioning of carbon (C) from α’ martensite to austenite. The clustering of C in α’ martensite was confirmed by impulse internal friction technique with observation of Cottrell atmosphere formation. 3D atom probe tomography analysis revealed partitioning of C atoms into austenite and clustering of C atoms in the α’ martensite. The remarkable increase of yield strength was attributed to redistribution of C atoms during the aging treatment.