{"title":"手术障碍与特征变化","authors":"Steven Sivek, Raphael Zentner","doi":"10.1090/tran/8596","DOIUrl":null,"url":null,"abstract":"We provide infinitely many rational homology 3-spheres with weight-one fundamental groups which do not arise from Dehn surgery on knots in $S^3$. In contrast with previously known examples, our proofs do not require any gauge theory or Floer homology. Instead, we make use of the $SU(2)$ character variety of the fundamental group, which for these manifolds is particularly simple: they are all $SU(2)$-cyclic, meaning that every $SU(2)$ representation has cyclic image.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"127 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Surgery obstructions and character varieties\",\"authors\":\"Steven Sivek, Raphael Zentner\",\"doi\":\"10.1090/tran/8596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide infinitely many rational homology 3-spheres with weight-one fundamental groups which do not arise from Dehn surgery on knots in $S^3$. In contrast with previously known examples, our proofs do not require any gauge theory or Floer homology. Instead, we make use of the $SU(2)$ character variety of the fundamental group, which for these manifolds is particularly simple: they are all $SU(2)$-cyclic, meaning that every $SU(2)$ representation has cyclic image.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We provide infinitely many rational homology 3-spheres with weight-one fundamental groups which do not arise from Dehn surgery on knots in $S^3$. In contrast with previously known examples, our proofs do not require any gauge theory or Floer homology. Instead, we make use of the $SU(2)$ character variety of the fundamental group, which for these manifolds is particularly simple: they are all $SU(2)$-cyclic, meaning that every $SU(2)$ representation has cyclic image.