手术障碍与特征变化

Steven Sivek, Raphael Zentner
{"title":"手术障碍与特征变化","authors":"Steven Sivek, Raphael Zentner","doi":"10.1090/tran/8596","DOIUrl":null,"url":null,"abstract":"We provide infinitely many rational homology 3-spheres with weight-one fundamental groups which do not arise from Dehn surgery on knots in $S^3$. In contrast with previously known examples, our proofs do not require any gauge theory or Floer homology. Instead, we make use of the $SU(2)$ character variety of the fundamental group, which for these manifolds is particularly simple: they are all $SU(2)$-cyclic, meaning that every $SU(2)$ representation has cyclic image.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"127 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Surgery obstructions and character varieties\",\"authors\":\"Steven Sivek, Raphael Zentner\",\"doi\":\"10.1090/tran/8596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide infinitely many rational homology 3-spheres with weight-one fundamental groups which do not arise from Dehn surgery on knots in $S^3$. In contrast with previously known examples, our proofs do not require any gauge theory or Floer homology. Instead, we make use of the $SU(2)$ character variety of the fundamental group, which for these manifolds is particularly simple: they are all $SU(2)$-cyclic, meaning that every $SU(2)$ representation has cyclic image.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们给出了无限多个具有重一基群的有理同调3球,这些基群不是由S^3$中的结点的Dehn手术产生的。与以前已知的例子相比,我们的证明不需要任何规范理论或花同调。相反,我们使用基本群的$SU(2)$字符变化,这对于这些流形来说特别简单:它们都是$SU(2)$-循环,这意味着每个$SU(2)$表示都有循环映像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surgery obstructions and character varieties
We provide infinitely many rational homology 3-spheres with weight-one fundamental groups which do not arise from Dehn surgery on knots in $S^3$. In contrast with previously known examples, our proofs do not require any gauge theory or Floer homology. Instead, we make use of the $SU(2)$ character variety of the fundamental group, which for these manifolds is particularly simple: they are all $SU(2)$-cyclic, meaning that every $SU(2)$ representation has cyclic image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信