基于统计机器翻译的神经机器翻译:以波斯语-西班牙语双语低资源场景为例

Benyamin Ahmadnia, Parisa Kordjamshidi, Gholamreza Haffari
{"title":"基于统计机器翻译的神经机器翻译:以波斯语-西班牙语双语低资源场景为例","authors":"Benyamin Ahmadnia, Parisa Kordjamshidi, Gholamreza Haffari","doi":"10.1109/ICMLA.2018.00196","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a sequence-to-sequence NMT model on Farsi-Spanish bilingually low-resource language pair. We apply effective preprocessing steps specific for Farsi language and optimize the model for both translation and transliteration. We also propose a loss function that enhances the word alignment and consequently improves translation quality.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"4 1","pages":"1209-1213"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Neural Machine Translation Advised by Statistical Machine Translation: The Case of Farsi-Spanish Bilingually Low-Resource Scenario\",\"authors\":\"Benyamin Ahmadnia, Parisa Kordjamshidi, Gholamreza Haffari\",\"doi\":\"10.1109/ICMLA.2018.00196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a sequence-to-sequence NMT model on Farsi-Spanish bilingually low-resource language pair. We apply effective preprocessing steps specific for Farsi language and optimize the model for both translation and transliteration. We also propose a loss function that enhances the word alignment and consequently improves translation quality.\",\"PeriodicalId\":6533,\"journal\":{\"name\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"4 1\",\"pages\":\"1209-1213\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2018.00196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们提出了一种基于波斯语-西班牙语双语低资源语言对的序列到序列NMT模型。我们采用了针对波斯语的有效预处理步骤,并对翻译和音译模型进行了优化。我们还提出了一个损失函数来增强单词对齐从而提高翻译质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Machine Translation Advised by Statistical Machine Translation: The Case of Farsi-Spanish Bilingually Low-Resource Scenario
In this paper, we propose a sequence-to-sequence NMT model on Farsi-Spanish bilingually low-resource language pair. We apply effective preprocessing steps specific for Farsi language and optimize the model for both translation and transliteration. We also propose a loss function that enhances the word alignment and consequently improves translation quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信