斯特林数与逆阶乘级数

Pub Date : 2020-12-29 DOI:10.47443/cm.2023.002
K. Boyadzhiev
{"title":"斯特林数与逆阶乘级数","authors":"K. Boyadzhiev","doi":"10.47443/cm.2023.002","DOIUrl":null,"url":null,"abstract":"We study inverse factorial series and their relation to Stirling numbers of the first kind. We prove a special representation of the polylogarithm function in terms of series with such numbers. Using various identities for Stirling numbers of the first kind we construct a number of expansions of functions in terms of inverse factorial series where the coefficients are special numbers. These results are used to prove/reprove the asymptotic expansion of some classical functions. We also prove a binomial formula involving inverse factorials.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stirling Numbers and Inverse Factorial Series\",\"authors\":\"K. Boyadzhiev\",\"doi\":\"10.47443/cm.2023.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study inverse factorial series and their relation to Stirling numbers of the first kind. We prove a special representation of the polylogarithm function in terms of series with such numbers. Using various identities for Stirling numbers of the first kind we construct a number of expansions of functions in terms of inverse factorial series where the coefficients are special numbers. These results are used to prove/reprove the asymptotic expansion of some classical functions. We also prove a binomial formula involving inverse factorials.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.47443/cm.2023.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47443/cm.2023.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了逆阶乘级数及其与第一类斯特林数的关系。我们证明了用这些数的级数表示多对数函数的一个特殊表示。利用第一类斯特林数的各种恒等式,我们用逆阶乘级数构造了一些函数的展开式,其中系数是特殊的数。这些结果被用来证明/修正一些经典函数的渐近展开式。我们还证明了一个包含逆阶乘的二项式公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stirling Numbers and Inverse Factorial Series
We study inverse factorial series and their relation to Stirling numbers of the first kind. We prove a special representation of the polylogarithm function in terms of series with such numbers. Using various identities for Stirling numbers of the first kind we construct a number of expansions of functions in terms of inverse factorial series where the coefficients are special numbers. These results are used to prove/reprove the asymptotic expansion of some classical functions. We also prove a binomial formula involving inverse factorials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信