学习模型中的理性预期趋同:一个注意事项

IF 2.9 4区 经济学 Q2 BUSINESS, FINANCE
YiLi Chien, In-Koo Cho, B. Ravikumar
{"title":"学习模型中的理性预期趋同:一个注意事项","authors":"YiLi Chien, In-Koo Cho, B. Ravikumar","doi":"10.20955/r.103.351-65","DOIUrl":null,"url":null,"abstract":"This paper illustrates a challenge in analyzing the learning algorithms resulting in second-order difference equations. We show in a simple monetary model that the learning dynamics do not converge to the rational expectations monetary steady state. We then show that to guarantee convergence, the gain parameter used in the learning rule has to be restricted based on economic fundamentals in the monetary model.","PeriodicalId":51713,"journal":{"name":"Federal Reserve Bank of St Louis Review","volume":"25 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2020-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convergence to Rational Expectations in Learning Models: A Note of Caution\",\"authors\":\"YiLi Chien, In-Koo Cho, B. Ravikumar\",\"doi\":\"10.20955/r.103.351-65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper illustrates a challenge in analyzing the learning algorithms resulting in second-order difference equations. We show in a simple monetary model that the learning dynamics do not converge to the rational expectations monetary steady state. We then show that to guarantee convergence, the gain parameter used in the learning rule has to be restricted based on economic fundamentals in the monetary model.\",\"PeriodicalId\":51713,\"journal\":{\"name\":\"Federal Reserve Bank of St Louis Review\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2020-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Federal Reserve Bank of St Louis Review\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.20955/r.103.351-65\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Federal Reserve Bank of St Louis Review","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.20955/r.103.351-65","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 2

摘要

本文阐述了在分析二阶差分方程的学习算法时所面临的挑战。我们在一个简单的货币模型中表明,学习动态并不收敛于理性预期货币稳态。然后我们表明,为了保证收敛,学习规则中使用的增益参数必须根据货币模型中的经济基本面进行限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence to Rational Expectations in Learning Models: A Note of Caution
This paper illustrates a challenge in analyzing the learning algorithms resulting in second-order difference equations. We show in a simple monetary model that the learning dynamics do not converge to the rational expectations monetary steady state. We then show that to guarantee convergence, the gain parameter used in the learning rule has to be restricted based on economic fundamentals in the monetary model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信