Ziyi Zhou, Oluwakayode Onireti, Lei Zhang, Muhammad Ali Imran
{"title":"基于IEEE 802.11的无线实用拜占庭容错网络性能分析","authors":"Ziyi Zhou, Oluwakayode Onireti, Lei Zhang, Muhammad Ali Imran","doi":"10.1109/GCWkshps52748.2021.9682068","DOIUrl":null,"url":null,"abstract":"Blockchain has achieved great success in cryptocurrency for its peculiarities for security and privacy, which are also important in the wireless network. Therefore, there are growing interests in applying blockchain to the wireless network. Wireless Practical Byzantine Fault Tolerance (PBFT) is considered the most applicable consensus mechanism. However, the existing researches and applications are mostly under wired scenarios. In this paper, we investigated the performance of the wireless PBFT network using IEEE 802.11 under unsaturated situations. The performance is evaluated through three metrics: success probability, delay and throughput. Results suggest that there exists a minimum transmission success probability to achieve the end-to-end performance required for the PBFT consensus protocol.","PeriodicalId":6802,"journal":{"name":"2021 IEEE Globecom Workshops (GC Wkshps)","volume":"115 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance Analysis of Wireless Practical Byzantine Fault Tolerance Networks Using IEEE 802.11\",\"authors\":\"Ziyi Zhou, Oluwakayode Onireti, Lei Zhang, Muhammad Ali Imran\",\"doi\":\"10.1109/GCWkshps52748.2021.9682068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blockchain has achieved great success in cryptocurrency for its peculiarities for security and privacy, which are also important in the wireless network. Therefore, there are growing interests in applying blockchain to the wireless network. Wireless Practical Byzantine Fault Tolerance (PBFT) is considered the most applicable consensus mechanism. However, the existing researches and applications are mostly under wired scenarios. In this paper, we investigated the performance of the wireless PBFT network using IEEE 802.11 under unsaturated situations. The performance is evaluated through three metrics: success probability, delay and throughput. Results suggest that there exists a minimum transmission success probability to achieve the end-to-end performance required for the PBFT consensus protocol.\",\"PeriodicalId\":6802,\"journal\":{\"name\":\"2021 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"115 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCWkshps52748.2021.9682068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps52748.2021.9682068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Analysis of Wireless Practical Byzantine Fault Tolerance Networks Using IEEE 802.11
Blockchain has achieved great success in cryptocurrency for its peculiarities for security and privacy, which are also important in the wireless network. Therefore, there are growing interests in applying blockchain to the wireless network. Wireless Practical Byzantine Fault Tolerance (PBFT) is considered the most applicable consensus mechanism. However, the existing researches and applications are mostly under wired scenarios. In this paper, we investigated the performance of the wireless PBFT network using IEEE 802.11 under unsaturated situations. The performance is evaluated through three metrics: success probability, delay and throughput. Results suggest that there exists a minimum transmission success probability to achieve the end-to-end performance required for the PBFT consensus protocol.