黑森链条支架

IF 0.4 Q4 MATHEMATICS, APPLIED
U. Naumann, Shubhaditya Burela
{"title":"黑森链条支架","authors":"U. Naumann, Shubhaditya Burela","doi":"10.4310/joc.2023.v14.n4.a7","DOIUrl":null,"url":null,"abstract":"Second derivatives of mathematical models for real-world phenomena are fundamental ingredients of a wide range of numerical simulation methods including parameter sensitivity analysis, uncertainty quantification, nonlinear optimization and model calibration. The evaluation of such Hessians often dominates the overall computational effort. The combinatorial {\\sc Hessian Accumulation} problem aiming to minimize the number of floating-point operations required for the computation of a Hessian turns out to be NP-complete. We propose a dynamic programming formulation for the solution of {\\sc Hessian Accumulation} over a sub-search space. This approach yields improvements by factors of ten and higher over the state of the art based on second-order tangent and adjoint algorithmic differentiation.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"53 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hessian chain bracketing\",\"authors\":\"U. Naumann, Shubhaditya Burela\",\"doi\":\"10.4310/joc.2023.v14.n4.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Second derivatives of mathematical models for real-world phenomena are fundamental ingredients of a wide range of numerical simulation methods including parameter sensitivity analysis, uncertainty quantification, nonlinear optimization and model calibration. The evaluation of such Hessians often dominates the overall computational effort. The combinatorial {\\\\sc Hessian Accumulation} problem aiming to minimize the number of floating-point operations required for the computation of a Hessian turns out to be NP-complete. We propose a dynamic programming formulation for the solution of {\\\\sc Hessian Accumulation} over a sub-search space. This approach yields improvements by factors of ten and higher over the state of the art based on second-order tangent and adjoint algorithmic differentiation.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2023.v14.n4.a7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2023.v14.n4.a7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

现实世界现象数学模型的二阶导数是参数敏感性分析、不确定性量化、非线性优化和模型校准等一系列数值模拟方法的基本组成部分。这种Hessians的评估通常会主导整个计算工作。组合{\sc Hessian累加}问题旨在最小化计算Hessian所需的浮点运算次数,结果证明是np完全的。我们提出了子搜索空间上求解{\sc Hessian积累}的动态规划公式。这种方法比基于二阶正切和伴随算法微分的现有技术提高了十倍甚至更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hessian chain bracketing
Second derivatives of mathematical models for real-world phenomena are fundamental ingredients of a wide range of numerical simulation methods including parameter sensitivity analysis, uncertainty quantification, nonlinear optimization and model calibration. The evaluation of such Hessians often dominates the overall computational effort. The combinatorial {\sc Hessian Accumulation} problem aiming to minimize the number of floating-point operations required for the computation of a Hessian turns out to be NP-complete. We propose a dynamic programming formulation for the solution of {\sc Hessian Accumulation} over a sub-search space. This approach yields improvements by factors of ten and higher over the state of the art based on second-order tangent and adjoint algorithmic differentiation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信