雷顿定理:扩展、极限和拟树

IF 0.6 3区 数学 Q3 MATHEMATICS
M. Bridson, Sam Shepherd
{"title":"雷顿定理:扩展、极限和拟树","authors":"M. Bridson, Sam Shepherd","doi":"10.2140/agt.2022.22.881","DOIUrl":null,"url":null,"abstract":"Leighton's Theorem states that if there is a tree $T$ that covers two finite graphs $G_1$ and $G_2$, then there is a finite graph $\\hat G$ that is covered by $T$ and covers both $G_1$ and $G_2$. We prove that this result does not extend to regular covers by graphs other than trees. Nor does it extend to non-regular covers by a quasitree, even if the automorphism group of the quasitree contains a uniform lattice. But it does extend to regular coverings by quasitrees.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"11 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Leighton’s theorem : Extensions, limitations and\\nquasitrees\",\"authors\":\"M. Bridson, Sam Shepherd\",\"doi\":\"10.2140/agt.2022.22.881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leighton's Theorem states that if there is a tree $T$ that covers two finite graphs $G_1$ and $G_2$, then there is a finite graph $\\\\hat G$ that is covered by $T$ and covers both $G_1$ and $G_2$. We prove that this result does not extend to regular covers by graphs other than trees. Nor does it extend to non-regular covers by a quasitree, even if the automorphism group of the quasitree contains a uniform lattice. But it does extend to regular coverings by quasitrees.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2022.22.881\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2022.22.881","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

雷顿定理指出,如果有一棵树$T$覆盖了两个有限图$G_1$和$G_2$,那么就有一个有限图$G $被$T$覆盖并且同时覆盖了$G_1$和$G_2$。我们证明了这个结果不能推广到除树以外的图的正则覆盖上。即使拟树的自同构群包含一致格,它也不能推广到拟树的非正则覆盖。但它确实延伸到准树的规则覆盖物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leighton’s theorem : Extensions, limitations and quasitrees
Leighton's Theorem states that if there is a tree $T$ that covers two finite graphs $G_1$ and $G_2$, then there is a finite graph $\hat G$ that is covered by $T$ and covers both $G_1$ and $G_2$. We prove that this result does not extend to regular covers by graphs other than trees. Nor does it extend to non-regular covers by a quasitree, even if the automorphism group of the quasitree contains a uniform lattice. But it does extend to regular coverings by quasitrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信