{"title":"确定二维非周期晶格结构线弹性特性的计算方法","authors":"C. Imediegwu, U. Grimm, R. Moat, I. Jowers","doi":"10.1177/03093247221150666","DOIUrl":null,"url":null,"abstract":"This paper develops a framework for determining the linear elastic properties of non-periodic lattice structures. An element-based material assignment methodology is implemented that facilitates the generation and analyses of arbitrary patterns on a structured mesh. An adapted numerical homogenization strategy features the inclusion of a homogenized region in the neighbourhood of the domain boundary that validates the implementation of periodic boundary conditions for an arbitrary finite patch of a periodic or non-periodic lattice structure. To demonstrate the method, the linear elastic properties of an aperiodic lattice pattern based on the Penrose (P3) pattern is evaluated. Such a structure exhibits order without translational symmetry and consequently lacks a repeating unit cell. The isotropic performance of the aperiodic lattice structure is investigated and compared to that of the well-known square periodic lattice. The framework opens the door to the investigation and analyses of other novel cellular structures which are not based on a repeating unit cell. Additive manufacturing facilitates the physical realization of such lattice structures, presenting them as viable alternatives to conventional periodic structures in the aerospace and bio-engineering industries.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A computational method for determining the linear elastic properties of 2D aperiodic lattice structures\",\"authors\":\"C. Imediegwu, U. Grimm, R. Moat, I. Jowers\",\"doi\":\"10.1177/03093247221150666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a framework for determining the linear elastic properties of non-periodic lattice structures. An element-based material assignment methodology is implemented that facilitates the generation and analyses of arbitrary patterns on a structured mesh. An adapted numerical homogenization strategy features the inclusion of a homogenized region in the neighbourhood of the domain boundary that validates the implementation of periodic boundary conditions for an arbitrary finite patch of a periodic or non-periodic lattice structure. To demonstrate the method, the linear elastic properties of an aperiodic lattice pattern based on the Penrose (P3) pattern is evaluated. Such a structure exhibits order without translational symmetry and consequently lacks a repeating unit cell. The isotropic performance of the aperiodic lattice structure is investigated and compared to that of the well-known square periodic lattice. The framework opens the door to the investigation and analyses of other novel cellular structures which are not based on a repeating unit cell. Additive manufacturing facilitates the physical realization of such lattice structures, presenting them as viable alternatives to conventional periodic structures in the aerospace and bio-engineering industries.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247221150666\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247221150666","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A computational method for determining the linear elastic properties of 2D aperiodic lattice structures
This paper develops a framework for determining the linear elastic properties of non-periodic lattice structures. An element-based material assignment methodology is implemented that facilitates the generation and analyses of arbitrary patterns on a structured mesh. An adapted numerical homogenization strategy features the inclusion of a homogenized region in the neighbourhood of the domain boundary that validates the implementation of periodic boundary conditions for an arbitrary finite patch of a periodic or non-periodic lattice structure. To demonstrate the method, the linear elastic properties of an aperiodic lattice pattern based on the Penrose (P3) pattern is evaluated. Such a structure exhibits order without translational symmetry and consequently lacks a repeating unit cell. The isotropic performance of the aperiodic lattice structure is investigated and compared to that of the well-known square periodic lattice. The framework opens the door to the investigation and analyses of other novel cellular structures which are not based on a repeating unit cell. Additive manufacturing facilitates the physical realization of such lattice structures, presenting them as viable alternatives to conventional periodic structures in the aerospace and bio-engineering industries.
期刊介绍:
The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice.
"Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK
This journal is a member of the Committee on Publication Ethics (COPE).