关于共轭测度的一致分布序列和积分对的极值问题

F. Durante, J. Fernández-Sánchez, C. Ignazzi, W. Trutschnig
{"title":"关于共轭测度的一致分布序列和积分对的极值问题","authors":"F. Durante, J. Fernández-Sánchez, C. Ignazzi, W. Trutschnig","doi":"10.2478/udt-2020-0013","DOIUrl":null,"url":null,"abstract":"Abstract Motivated by the maximal average distance of uniformly distributed sequences we consider some extremal problems for functionals of type μC↦∫01∫01FdμC, {\\mu _C} \\mapsto \\int_0^1 {{{\\int_0^1 {Fd} }_\\mu }_C,} where µC is a copula measure and F is a Riemann integrable function on [0, 1]2 of a specific type. Such problems have been considered in [4] and are of interest in the study of limit points of two uniformly distributed sequences.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"1 1","pages":"99 - 112"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Extremal Problems for Pairs of Uniformly Distributed Sequences and Integrals with Respect to Copula Measures\",\"authors\":\"F. Durante, J. Fernández-Sánchez, C. Ignazzi, W. Trutschnig\",\"doi\":\"10.2478/udt-2020-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Motivated by the maximal average distance of uniformly distributed sequences we consider some extremal problems for functionals of type μC↦∫01∫01FdμC, {\\\\mu _C} \\\\mapsto \\\\int_0^1 {{{\\\\int_0^1 {Fd} }_\\\\mu }_C,} where µC is a copula measure and F is a Riemann integrable function on [0, 1]2 of a specific type. Such problems have been considered in [4] and are of interest in the study of limit points of two uniformly distributed sequences.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"1 1\",\"pages\":\"99 - 112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2020-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2020-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要基于均匀分布序列的最大平均距离,考虑了一类泛函(μC =∫01∫01FdμC, {\mu _C }\mapsto\int _0^1 {{{\int _0^1 {Fd} _}\mu _C)的极值问题},其中µC是一个共轭测度,F是一个特定类型的[0,1]2上的Riemann可积函数。这类问题在[4]中已经得到了考虑,对研究两个均匀分布序列的极限点具有重要意义。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Extremal Problems for Pairs of Uniformly Distributed Sequences and Integrals with Respect to Copula Measures
Abstract Motivated by the maximal average distance of uniformly distributed sequences we consider some extremal problems for functionals of type μC↦∫01∫01FdμC, {\mu _C} \mapsto \int_0^1 {{{\int_0^1 {Fd} }_\mu }_C,} where µC is a copula measure and F is a Riemann integrable function on [0, 1]2 of a specific type. Such problems have been considered in [4] and are of interest in the study of limit points of two uniformly distributed sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信