非单调不可分性:因果推理的反事实分布估计量

Nir Billfeld, Moshe Kim
{"title":"非单调不可分性:因果推理的反事实分布估计量","authors":"Nir Billfeld, Moshe Kim","doi":"10.2139/ssrn.3343438","DOIUrl":null,"url":null,"abstract":"Nonparametric identification strategy is employed to capture causal relationships without imposing any variant of monotonicity existing in the nonseparable nonlinear error model literature. This is important as when monotonicity is applied to the instrumental variables it limits their availability and when applied to the unobservables it can hardly be justified in the non-scalar case. Moreover, in cases where monotonicity is not satisfied the monotonicity-based estimators might be severely biased as shown in comparative Monte Carlo simulation. The key idea in the proposed identification and estimation strategy is to uncover the counterfactual distribution of the dependent variable, which is not directly observed in the data. We offer a two-step M-Estimator based on a resolution-dependent reproducing symmetric kernel density estimator rather than on the bandwidth-dependent classical kernel and thus, less sensitive to bandwidth choice. Additionally, the average marginal effect of the endogenous covariate on the outcome variable is identified directly from the noisy data which precludes the need to employ additional estimation steps thereby avoiding potential error accumulation. Asymptotic properties of the counterfactual M-Estimator are established.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonseparability Without Monotonicity: The Couterfactual Distribution Estimator for Causal Inference\",\"authors\":\"Nir Billfeld, Moshe Kim\",\"doi\":\"10.2139/ssrn.3343438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonparametric identification strategy is employed to capture causal relationships without imposing any variant of monotonicity existing in the nonseparable nonlinear error model literature. This is important as when monotonicity is applied to the instrumental variables it limits their availability and when applied to the unobservables it can hardly be justified in the non-scalar case. Moreover, in cases where monotonicity is not satisfied the monotonicity-based estimators might be severely biased as shown in comparative Monte Carlo simulation. The key idea in the proposed identification and estimation strategy is to uncover the counterfactual distribution of the dependent variable, which is not directly observed in the data. We offer a two-step M-Estimator based on a resolution-dependent reproducing symmetric kernel density estimator rather than on the bandwidth-dependent classical kernel and thus, less sensitive to bandwidth choice. Additionally, the average marginal effect of the endogenous covariate on the outcome variable is identified directly from the noisy data which precludes the need to employ additional estimation steps thereby avoiding potential error accumulation. Asymptotic properties of the counterfactual M-Estimator are established.\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3343438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3343438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用非参数辨识策略捕捉因果关系,而不施加不可分非线性误差模型文献中存在的单调性的任何变体。这一点很重要,因为当单调性应用于工具变量时,它限制了它们的可用性,当应用于不可观测时,它在非标量情况下很难被证明是合理的。此外,在单调性不满足的情况下,基于单调性的估计可能会严重偏差,如比较蒙特卡罗模拟所示。所提出的识别和估计策略的关键思想是揭示因变量的反事实分布,这不是直接在数据中观察到的。我们提供了一个基于分辨率相关的再现对称核密度估计器的两步m估计器,而不是基于带宽相关的经典核,因此对带宽选择不太敏感。此外,内源性协变量对结果变量的平均边际效应直接从噪声数据中识别出来,这就排除了使用额外估计步骤的需要,从而避免了潜在的误差积累。建立了反事实m估计量的渐近性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonseparability Without Monotonicity: The Couterfactual Distribution Estimator for Causal Inference
Nonparametric identification strategy is employed to capture causal relationships without imposing any variant of monotonicity existing in the nonseparable nonlinear error model literature. This is important as when monotonicity is applied to the instrumental variables it limits their availability and when applied to the unobservables it can hardly be justified in the non-scalar case. Moreover, in cases where monotonicity is not satisfied the monotonicity-based estimators might be severely biased as shown in comparative Monte Carlo simulation. The key idea in the proposed identification and estimation strategy is to uncover the counterfactual distribution of the dependent variable, which is not directly observed in the data. We offer a two-step M-Estimator based on a resolution-dependent reproducing symmetric kernel density estimator rather than on the bandwidth-dependent classical kernel and thus, less sensitive to bandwidth choice. Additionally, the average marginal effect of the endogenous covariate on the outcome variable is identified directly from the noisy data which precludes the need to employ additional estimation steps thereby avoiding potential error accumulation. Asymptotic properties of the counterfactual M-Estimator are established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信