非等熵Navier-Stokes方程全局解的渐近稳定性

IF 0.7 Q2 MATHEMATICS
Qingliu Li, Dandan Ren, Xinfeng Liang
{"title":"非等熵Navier-Stokes方程全局解的渐近稳定性","authors":"Qingliu Li, Dandan Ren, Xinfeng Liang","doi":"10.1155/2023/7374955","DOIUrl":null,"url":null,"abstract":"This paper studies the asymptotic stability of global solutions of the three-dimensional nonisentropic compressible Navier–Stokes equations, where the initial data satisfy the “well-prepared” initial conditions, and the velocity field and temperature satisfy the Dirichlet boundary condition and convective boundary condition, respectively, based on the incompressible limit of global solutions. With the uniform estimates with respect to both the Mach number \n \n ε\n \n and time \n \n t\n \n , we prove the exponentially asymptotic stability for global solutions of both the compressible Navier–Stokes equations and its limiting incompressible equations.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Stability of Global Solutions to Non-isentropic Navier–Stokes Equations\",\"authors\":\"Qingliu Li, Dandan Ren, Xinfeng Liang\",\"doi\":\"10.1155/2023/7374955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the asymptotic stability of global solutions of the three-dimensional nonisentropic compressible Navier–Stokes equations, where the initial data satisfy the “well-prepared” initial conditions, and the velocity field and temperature satisfy the Dirichlet boundary condition and convective boundary condition, respectively, based on the incompressible limit of global solutions. With the uniform estimates with respect to both the Mach number \\n \\n ε\\n \\n and time \\n \\n t\\n \\n , we prove the exponentially asymptotic stability for global solutions of both the compressible Navier–Stokes equations and its limiting incompressible equations.\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7374955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/7374955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文基于全局解的不可压缩极限,研究了三维非等熵可压缩Navier-Stokes方程全局解的渐近稳定性,其中初始数据满足“准备好的”初始条件,速度场和温度分别满足Dirichlet边界条件和对流边界条件。利用马赫数ε和时间t的一致估计,证明了可压缩Navier-Stokes方程及其极限不可压缩方程整体解的指数渐近稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Stability of Global Solutions to Non-isentropic Navier–Stokes Equations
This paper studies the asymptotic stability of global solutions of the three-dimensional nonisentropic compressible Navier–Stokes equations, where the initial data satisfy the “well-prepared” initial conditions, and the velocity field and temperature satisfy the Dirichlet boundary condition and convective boundary condition, respectively, based on the incompressible limit of global solutions. With the uniform estimates with respect to both the Mach number ε and time t , we prove the exponentially asymptotic stability for global solutions of both the compressible Navier–Stokes equations and its limiting incompressible equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信