{"title":"乳腺癌分型方法的比较分析","authors":"T. Asfaw","doi":"10.34218/ijcet.10.4.2019.002","DOIUrl":null,"url":null,"abstract":"Breast cancer is one of the greatest common diseases among women in Africa and worldwide. Accurate and early diagnosis is very significant phase in therapy and action. However, it is not an easy one due to some doubts in detection of breast cancer. Machine learning helps us to extract information and knowledge from this the basis of past experiences and detect hard-to-perceive pattern from large and noisy dataset. This paper compares and analysis the performance of machine learning algorithms, namely Decision Tree (DT), Logistic Regression (LR), Naïve Bayes (NB), and K-Nearest Neighbors (KNN) for detecting breast cancer. The data set used for comparison was from UCI Wisconsin original breast cancer data set. The result outcome shows that Logistic Regression performs better and classification accuracy is 96.93%.","PeriodicalId":38492,"journal":{"name":"International Journal of Computer Aided Engineering and Technology","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"COMPARATIVE ANALYSIS OF CLASSIFICATION APPROACHES FOR BREAST CANCER\",\"authors\":\"T. Asfaw\",\"doi\":\"10.34218/ijcet.10.4.2019.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer is one of the greatest common diseases among women in Africa and worldwide. Accurate and early diagnosis is very significant phase in therapy and action. However, it is not an easy one due to some doubts in detection of breast cancer. Machine learning helps us to extract information and knowledge from this the basis of past experiences and detect hard-to-perceive pattern from large and noisy dataset. This paper compares and analysis the performance of machine learning algorithms, namely Decision Tree (DT), Logistic Regression (LR), Naïve Bayes (NB), and K-Nearest Neighbors (KNN) for detecting breast cancer. The data set used for comparison was from UCI Wisconsin original breast cancer data set. The result outcome shows that Logistic Regression performs better and classification accuracy is 96.93%.\",\"PeriodicalId\":38492,\"journal\":{\"name\":\"International Journal of Computer Aided Engineering and Technology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Aided Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34218/ijcet.10.4.2019.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Aided Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34218/ijcet.10.4.2019.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
COMPARATIVE ANALYSIS OF CLASSIFICATION APPROACHES FOR BREAST CANCER
Breast cancer is one of the greatest common diseases among women in Africa and worldwide. Accurate and early diagnosis is very significant phase in therapy and action. However, it is not an easy one due to some doubts in detection of breast cancer. Machine learning helps us to extract information and knowledge from this the basis of past experiences and detect hard-to-perceive pattern from large and noisy dataset. This paper compares and analysis the performance of machine learning algorithms, namely Decision Tree (DT), Logistic Regression (LR), Naïve Bayes (NB), and K-Nearest Neighbors (KNN) for detecting breast cancer. The data set used for comparison was from UCI Wisconsin original breast cancer data set. The result outcome shows that Logistic Regression performs better and classification accuracy is 96.93%.
期刊介绍:
IJCAET is a journal of new knowledge, reporting research and applications which highlight the opportunities and limitations of computer aided engineering and technology in today''s lifecycle-oriented, knowledge-based era of production. Contributions that deal with both academic research and industrial practices are included. IJCAET is designed to be a multi-disciplinary, fully refereed and international journal.