一个用于查询大图的通用系统

Qizhen Zhang, D. Yan, James Cheng
{"title":"一个用于查询大图的通用系统","authors":"Qizhen Zhang, D. Yan, James Cheng","doi":"10.1145/2882903.2899398","DOIUrl":null,"url":null,"abstract":"Inspired by Google's Pregel, many distributed graph processing systems have been developed recently to process big graphs. These systems expose a vertex-centric programming interface to users, where a programmer thinks like a vertex when designing parallel graph algorithms. However, existing systems are designed for tasks where most vertices in a graph participate in the computation, and they are not suitable for processing light-workload graph queries which only access a small portion of vertices. This is because their programming model can seriously under-utilize the resources in a cluster for processing graph queries. In this demonstration, we introduce a general-purpose system for querying big graphs, called Quegel, which treats queries as first-class citizens in the design of its computing model. Quegel adopts a novel superstep-sharing execution model to overcome the weaknesses of existing systems. We demonstrate it is user-friendly to write parallel graph-querying programs with Quegel's interface; and we also show that Quegel is able to achieve real-time response time in various applications, including the two applications that we plan to demonstrate: point-to-point shortest-path queries and XML keyword search.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Quegel: A General-Purpose System for Querying Big Graphs\",\"authors\":\"Qizhen Zhang, D. Yan, James Cheng\",\"doi\":\"10.1145/2882903.2899398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by Google's Pregel, many distributed graph processing systems have been developed recently to process big graphs. These systems expose a vertex-centric programming interface to users, where a programmer thinks like a vertex when designing parallel graph algorithms. However, existing systems are designed for tasks where most vertices in a graph participate in the computation, and they are not suitable for processing light-workload graph queries which only access a small portion of vertices. This is because their programming model can seriously under-utilize the resources in a cluster for processing graph queries. In this demonstration, we introduce a general-purpose system for querying big graphs, called Quegel, which treats queries as first-class citizens in the design of its computing model. Quegel adopts a novel superstep-sharing execution model to overcome the weaknesses of existing systems. We demonstrate it is user-friendly to write parallel graph-querying programs with Quegel's interface; and we also show that Quegel is able to achieve real-time response time in various applications, including the two applications that we plan to demonstrate: point-to-point shortest-path queries and XML keyword search.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2899398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2899398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

受Google的Pregel的启发,最近开发了许多分布式图形处理系统来处理大图形。这些系统向用户公开了一个以顶点为中心的编程接口,程序员在设计并行图算法时就像一个顶点一样思考。然而,现有的系统是为图中大多数顶点参与计算的任务而设计的,它们不适合处理只访问一小部分顶点的轻工作量图查询。这是因为他们的编程模型在处理图查询时可能严重地没有充分利用集群中的资源。在本演示中,我们将介绍一个用于查询大图的通用系统,称为Quegel,它在设计其计算模型时将查询视为一等公民。为了克服现有系统的缺点,Quegel采用了一种新的超步共享执行模型。我们证明了用Quegel接口编写并行图查询程序是用户友好的;我们还展示了Quegel能够在各种应用程序中实现实时响应时间,包括我们计划演示的两个应用程序:点对点最短路径查询和XML关键字搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quegel: A General-Purpose System for Querying Big Graphs
Inspired by Google's Pregel, many distributed graph processing systems have been developed recently to process big graphs. These systems expose a vertex-centric programming interface to users, where a programmer thinks like a vertex when designing parallel graph algorithms. However, existing systems are designed for tasks where most vertices in a graph participate in the computation, and they are not suitable for processing light-workload graph queries which only access a small portion of vertices. This is because their programming model can seriously under-utilize the resources in a cluster for processing graph queries. In this demonstration, we introduce a general-purpose system for querying big graphs, called Quegel, which treats queries as first-class citizens in the design of its computing model. Quegel adopts a novel superstep-sharing execution model to overcome the weaknesses of existing systems. We demonstrate it is user-friendly to write parallel graph-querying programs with Quegel's interface; and we also show that Quegel is able to achieve real-time response time in various applications, including the two applications that we plan to demonstrate: point-to-point shortest-path queries and XML keyword search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信