{"title":"一个用于查询大图的通用系统","authors":"Qizhen Zhang, D. Yan, James Cheng","doi":"10.1145/2882903.2899398","DOIUrl":null,"url":null,"abstract":"Inspired by Google's Pregel, many distributed graph processing systems have been developed recently to process big graphs. These systems expose a vertex-centric programming interface to users, where a programmer thinks like a vertex when designing parallel graph algorithms. However, existing systems are designed for tasks where most vertices in a graph participate in the computation, and they are not suitable for processing light-workload graph queries which only access a small portion of vertices. This is because their programming model can seriously under-utilize the resources in a cluster for processing graph queries. In this demonstration, we introduce a general-purpose system for querying big graphs, called Quegel, which treats queries as first-class citizens in the design of its computing model. Quegel adopts a novel superstep-sharing execution model to overcome the weaknesses of existing systems. We demonstrate it is user-friendly to write parallel graph-querying programs with Quegel's interface; and we also show that Quegel is able to achieve real-time response time in various applications, including the two applications that we plan to demonstrate: point-to-point shortest-path queries and XML keyword search.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Quegel: A General-Purpose System for Querying Big Graphs\",\"authors\":\"Qizhen Zhang, D. Yan, James Cheng\",\"doi\":\"10.1145/2882903.2899398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by Google's Pregel, many distributed graph processing systems have been developed recently to process big graphs. These systems expose a vertex-centric programming interface to users, where a programmer thinks like a vertex when designing parallel graph algorithms. However, existing systems are designed for tasks where most vertices in a graph participate in the computation, and they are not suitable for processing light-workload graph queries which only access a small portion of vertices. This is because their programming model can seriously under-utilize the resources in a cluster for processing graph queries. In this demonstration, we introduce a general-purpose system for querying big graphs, called Quegel, which treats queries as first-class citizens in the design of its computing model. Quegel adopts a novel superstep-sharing execution model to overcome the weaknesses of existing systems. We demonstrate it is user-friendly to write parallel graph-querying programs with Quegel's interface; and we also show that Quegel is able to achieve real-time response time in various applications, including the two applications that we plan to demonstrate: point-to-point shortest-path queries and XML keyword search.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2899398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2899398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quegel: A General-Purpose System for Querying Big Graphs
Inspired by Google's Pregel, many distributed graph processing systems have been developed recently to process big graphs. These systems expose a vertex-centric programming interface to users, where a programmer thinks like a vertex when designing parallel graph algorithms. However, existing systems are designed for tasks where most vertices in a graph participate in the computation, and they are not suitable for processing light-workload graph queries which only access a small portion of vertices. This is because their programming model can seriously under-utilize the resources in a cluster for processing graph queries. In this demonstration, we introduce a general-purpose system for querying big graphs, called Quegel, which treats queries as first-class citizens in the design of its computing model. Quegel adopts a novel superstep-sharing execution model to overcome the weaknesses of existing systems. We demonstrate it is user-friendly to write parallel graph-querying programs with Quegel's interface; and we also show that Quegel is able to achieve real-time response time in various applications, including the two applications that we plan to demonstrate: point-to-point shortest-path queries and XML keyword search.