一种多标签卷积神经网络跨域动作单元检测方法

Sayan Ghosh, Eugene Laksana, Stefan Scherer, Louis-Philippe Morency
{"title":"一种多标签卷积神经网络跨域动作单元检测方法","authors":"Sayan Ghosh, Eugene Laksana, Stefan Scherer, Louis-Philippe Morency","doi":"10.1109/ACII.2015.7344632","DOIUrl":null,"url":null,"abstract":"Action Unit (AU) detection from facial images is an important classification task in affective computing. However most existing approaches use carefully engineered feature extractors along with off-the-shelf classifiers. There has also been less focus on how well classifiers generalize when tested on different datasets. In our paper, we propose a multi-label convolutional neural network approach to learn a shared representation between multiple AUs directly from the input image. Experiments on three AU datasets- CK+, DISFA and BP4D indicate that our approach obtains competitive results on all datasets. Cross-dataset experiments also indicate that the network generalizes well to other datasets, even when under different training and testing conditions.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"24 2 1","pages":"609-615"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"A multi-label convolutional neural network approach to cross-domain action unit detection\",\"authors\":\"Sayan Ghosh, Eugene Laksana, Stefan Scherer, Louis-Philippe Morency\",\"doi\":\"10.1109/ACII.2015.7344632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Action Unit (AU) detection from facial images is an important classification task in affective computing. However most existing approaches use carefully engineered feature extractors along with off-the-shelf classifiers. There has also been less focus on how well classifiers generalize when tested on different datasets. In our paper, we propose a multi-label convolutional neural network approach to learn a shared representation between multiple AUs directly from the input image. Experiments on three AU datasets- CK+, DISFA and BP4D indicate that our approach obtains competitive results on all datasets. Cross-dataset experiments also indicate that the network generalizes well to other datasets, even when under different training and testing conditions.\",\"PeriodicalId\":6863,\"journal\":{\"name\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"volume\":\"24 2 1\",\"pages\":\"609-615\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACII.2015.7344632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

面部图像的动作单元(AU)检测是情感计算中的一项重要分类任务。然而,大多数现有的方法使用精心设计的特征提取器和现成的分类器。在对不同数据集进行测试时,分类器泛化的效果也很少受到关注。在本文中,我们提出了一种多标签卷积神经网络方法,直接从输入图像中学习多个au之间的共享表示。在CK+、DISFA和BP4D三个AU数据集上的实验表明,我们的方法在所有数据集上都获得了具有竞争力的结果。跨数据集实验也表明,即使在不同的训练和测试条件下,网络也能很好地泛化到其他数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-label convolutional neural network approach to cross-domain action unit detection
Action Unit (AU) detection from facial images is an important classification task in affective computing. However most existing approaches use carefully engineered feature extractors along with off-the-shelf classifiers. There has also been less focus on how well classifiers generalize when tested on different datasets. In our paper, we propose a multi-label convolutional neural network approach to learn a shared representation between multiple AUs directly from the input image. Experiments on three AU datasets- CK+, DISFA and BP4D indicate that our approach obtains competitive results on all datasets. Cross-dataset experiments also indicate that the network generalizes well to other datasets, even when under different training and testing conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信