理解执法和普通人对设计可解释的犯罪地图算法的看法

Md. Romael Haque, Katherine Weathington, Joseph Chudzik, Shion Guha
{"title":"理解执法和普通人对设计可解释的犯罪地图算法的看法","authors":"Md. Romael Haque, Katherine Weathington, Joseph Chudzik, Shion Guha","doi":"10.1145/3406865.3418330","DOIUrl":null,"url":null,"abstract":"In recent years, with growing concerns of making predictive policing less-biased and less-risky, the HCI and CSCW research communities have focused on designing more explainable and accountable algorithms in the criminal justice system. In this extended abstract, we present a preliminary, qualitative analysis of the perceptions of people with different backgrounds (n=60) from Milwaukee, USA on algorithmic crime mapping. Our initial results suggest the need for algorithmic interaction and the database transparency of the system. Taken these suggestions together will inspire to design an explainable crime mapping algorithms that pay attention to the values and needs of law enforcement and common peoples.","PeriodicalId":93424,"journal":{"name":"CSCW '20 Companion : conference companion publication of the 2020 Conference on Computer Supported Cooperative Work and Social Computing : October 17-21, 2020, Virtual Event, USA. Conference on Computer-Supported Cooperative Work and So...","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Understanding Law Enforcement and Common Peoples' Perspectives on Designing Explainable Crime Mapping Algorithms\",\"authors\":\"Md. Romael Haque, Katherine Weathington, Joseph Chudzik, Shion Guha\",\"doi\":\"10.1145/3406865.3418330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, with growing concerns of making predictive policing less-biased and less-risky, the HCI and CSCW research communities have focused on designing more explainable and accountable algorithms in the criminal justice system. In this extended abstract, we present a preliminary, qualitative analysis of the perceptions of people with different backgrounds (n=60) from Milwaukee, USA on algorithmic crime mapping. Our initial results suggest the need for algorithmic interaction and the database transparency of the system. Taken these suggestions together will inspire to design an explainable crime mapping algorithms that pay attention to the values and needs of law enforcement and common peoples.\",\"PeriodicalId\":93424,\"journal\":{\"name\":\"CSCW '20 Companion : conference companion publication of the 2020 Conference on Computer Supported Cooperative Work and Social Computing : October 17-21, 2020, Virtual Event, USA. Conference on Computer-Supported Cooperative Work and So...\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSCW '20 Companion : conference companion publication of the 2020 Conference on Computer Supported Cooperative Work and Social Computing : October 17-21, 2020, Virtual Event, USA. Conference on Computer-Supported Cooperative Work and So...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3406865.3418330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSCW '20 Companion : conference companion publication of the 2020 Conference on Computer Supported Cooperative Work and Social Computing : October 17-21, 2020, Virtual Event, USA. Conference on Computer-Supported Cooperative Work and So...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3406865.3418330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,随着人们越来越关注如何使预测性警务减少偏见和降低风险,HCI和CSCW研究社区一直致力于在刑事司法系统中设计更可解释和更负责任的算法。在这篇扩展的摘要中,我们对来自美国密尔沃基的不同背景(n=60)的人对算法犯罪地图的看法进行了初步的定性分析。我们的初步结果表明需要算法交互和系统的数据库透明度。将这些建议结合起来,将启发我们设计一种可解释的犯罪地图算法,该算法关注执法部门和普通民众的价值观和需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding Law Enforcement and Common Peoples' Perspectives on Designing Explainable Crime Mapping Algorithms
In recent years, with growing concerns of making predictive policing less-biased and less-risky, the HCI and CSCW research communities have focused on designing more explainable and accountable algorithms in the criminal justice system. In this extended abstract, we present a preliminary, qualitative analysis of the perceptions of people with different backgrounds (n=60) from Milwaukee, USA on algorithmic crime mapping. Our initial results suggest the need for algorithmic interaction and the database transparency of the system. Taken these suggestions together will inspire to design an explainable crime mapping algorithms that pay attention to the values and needs of law enforcement and common peoples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信