膜的动态边界条件,其表面能取决于平均和高斯曲率

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. Gavrilyuk, H. Gouin
{"title":"膜的动态边界条件,其表面能取决于平均和高斯曲率","authors":"S. Gavrilyuk, H. Gouin","doi":"10.2140/memocs.2019.7.131","DOIUrl":null,"url":null,"abstract":"Membranes are an important subject of study in physical chemistry and biology. They can be considered as material surfaces with a surface energy depending on the curvature tensor. Usually, mathematical models developed in the literature consider the dependence of surface energy only on mean curvature with an added linear term for Gauss curvature. Therefore, for closed surfaces the Gauss curvature term can be eliminated because of the Gauss-Bonnet theorem. In [18], the dependence on the mean and Gaussian curvatures was considered in statics. The authors derived the shape equation as well as two scalar boundary conditions on the contact line. In this paper-thanks to the principle of virtual working-the equations of motion and boundary conditions governing the fluid membranes subject to general dynamical bending are derived. We obtain the dynamic 'shape equa-tion' (equation for the membrane surface) and the dynamic conditions on the contact line generalizing the classical Young-Dupr{\\'e} condition.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic boundary conditions for membranes whose surface energy depends on the mean and Gaussian curvatures\",\"authors\":\"S. Gavrilyuk, H. Gouin\",\"doi\":\"10.2140/memocs.2019.7.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Membranes are an important subject of study in physical chemistry and biology. They can be considered as material surfaces with a surface energy depending on the curvature tensor. Usually, mathematical models developed in the literature consider the dependence of surface energy only on mean curvature with an added linear term for Gauss curvature. Therefore, for closed surfaces the Gauss curvature term can be eliminated because of the Gauss-Bonnet theorem. In [18], the dependence on the mean and Gaussian curvatures was considered in statics. The authors derived the shape equation as well as two scalar boundary conditions on the contact line. In this paper-thanks to the principle of virtual working-the equations of motion and boundary conditions governing the fluid membranes subject to general dynamical bending are derived. We obtain the dynamic 'shape equa-tion' (equation for the membrane surface) and the dynamic conditions on the contact line generalizing the classical Young-Dupr{\\\\'e} condition.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/memocs.2019.7.131\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/memocs.2019.7.131","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

膜是物理化学和生物学中重要的研究课题。它们可以被认为是具有依赖于曲率张量的表面能的材料表面。通常,文献中建立的数学模型只考虑表面能对平均曲率的依赖,并增加高斯曲率的线性项。因此,对于封闭曲面,高斯曲率项可以通过高斯-博内定理消除。在[18]中,静力学中考虑了对平均曲率和高斯曲率的依赖。导出了接触线上的形状方程和两个标量边界条件。本文利用虚功原理,导出了一般动力弯曲下流体膜的运动方程和边界条件。推广了经典Young-Dupr{\'e}条件,得到了膜表面的动态“形状方程”和接触线上的动态条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic boundary conditions for membranes whose surface energy depends on the mean and Gaussian curvatures
Membranes are an important subject of study in physical chemistry and biology. They can be considered as material surfaces with a surface energy depending on the curvature tensor. Usually, mathematical models developed in the literature consider the dependence of surface energy only on mean curvature with an added linear term for Gauss curvature. Therefore, for closed surfaces the Gauss curvature term can be eliminated because of the Gauss-Bonnet theorem. In [18], the dependence on the mean and Gaussian curvatures was considered in statics. The authors derived the shape equation as well as two scalar boundary conditions on the contact line. In this paper-thanks to the principle of virtual working-the equations of motion and boundary conditions governing the fluid membranes subject to general dynamical bending are derived. We obtain the dynamic 'shape equa-tion' (equation for the membrane surface) and the dynamic conditions on the contact line generalizing the classical Young-Dupr{\'e} condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信