S. Khoroshylov, S. Martyniuk, O. Sushko, V. Vasyliev, E. Medzmariashvili, W. Woods
{"title":"天基合成孔径雷达动力学与姿态控制","authors":"S. Khoroshylov, S. Martyniuk, O. Sushko, V. Vasyliev, E. Medzmariashvili, W. Woods","doi":"10.1515/nleng-2022-0277","DOIUrl":null,"url":null,"abstract":"Abstract This work tackles the problem of attitude control of a space-based synthetic aperture radar with a deployable reflector antenna, representing a lightly damped uncertain vibratory system with highly nonlinear dynamics. A control strategy based on two identifiable in-orbit vector parameters is proposed to make the robust controller less conservative. The first parameter is used in the feedforward loop to achieve a trade-off between the energy efficiency of maneuvers and the amplitudes of the oscillatory response. The feedback loop utilizes the second parameter to accurately handle the controller-structure interactions by adaptive notch filters. The notch filters are included in the augmented plant at the design stage to guarantee closed-loop robustness against disturbances, unmodeled dynamics, and parametric uncertainty. The system’s robustness and specified requirements are confirmed by formal criteria and numerical simulations using a realistic model of the flexible spacecraft.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":"35 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamics and attitude control of space-based synthetic aperture radar\",\"authors\":\"S. Khoroshylov, S. Martyniuk, O. Sushko, V. Vasyliev, E. Medzmariashvili, W. Woods\",\"doi\":\"10.1515/nleng-2022-0277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work tackles the problem of attitude control of a space-based synthetic aperture radar with a deployable reflector antenna, representing a lightly damped uncertain vibratory system with highly nonlinear dynamics. A control strategy based on two identifiable in-orbit vector parameters is proposed to make the robust controller less conservative. The first parameter is used in the feedforward loop to achieve a trade-off between the energy efficiency of maneuvers and the amplitudes of the oscillatory response. The feedback loop utilizes the second parameter to accurately handle the controller-structure interactions by adaptive notch filters. The notch filters are included in the augmented plant at the design stage to guarantee closed-loop robustness against disturbances, unmodeled dynamics, and parametric uncertainty. The system’s robustness and specified requirements are confirmed by formal criteria and numerical simulations using a realistic model of the flexible spacecraft.\",\"PeriodicalId\":37863,\"journal\":{\"name\":\"Nonlinear Engineering - Modeling and Application\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Engineering - Modeling and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/nleng-2022-0277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Dynamics and attitude control of space-based synthetic aperture radar
Abstract This work tackles the problem of attitude control of a space-based synthetic aperture radar with a deployable reflector antenna, representing a lightly damped uncertain vibratory system with highly nonlinear dynamics. A control strategy based on two identifiable in-orbit vector parameters is proposed to make the robust controller less conservative. The first parameter is used in the feedforward loop to achieve a trade-off between the energy efficiency of maneuvers and the amplitudes of the oscillatory response. The feedback loop utilizes the second parameter to accurately handle the controller-structure interactions by adaptive notch filters. The notch filters are included in the augmented plant at the design stage to guarantee closed-loop robustness against disturbances, unmodeled dynamics, and parametric uncertainty. The system’s robustness and specified requirements are confirmed by formal criteria and numerical simulations using a realistic model of the flexible spacecraft.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.