{"title":"BiCoS:一种用于图像分类的双水平共分割方法","authors":"Yuning Chai, V. Lempitsky, Andrew Zisserman","doi":"10.1109/ICCV.2011.6126546","DOIUrl":null,"url":null,"abstract":"The objective of this paper is the unsupervised segmentation of image training sets into foreground and background in order to improve image classification performance. To this end we introduce a new scalable, alternation-based algorithm for co-segmentation, BiCoS, which is simpler than many of its predecessors, and yet has superior performance on standard benchmark image datasets.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"201","resultStr":"{\"title\":\"BiCoS: A Bi-level co-segmentation method for image classification\",\"authors\":\"Yuning Chai, V. Lempitsky, Andrew Zisserman\",\"doi\":\"10.1109/ICCV.2011.6126546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is the unsupervised segmentation of image training sets into foreground and background in order to improve image classification performance. To this end we introduce a new scalable, alternation-based algorithm for co-segmentation, BiCoS, which is simpler than many of its predecessors, and yet has superior performance on standard benchmark image datasets.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"201\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BiCoS: A Bi-level co-segmentation method for image classification
The objective of this paper is the unsupervised segmentation of image training sets into foreground and background in order to improve image classification performance. To this end we introduce a new scalable, alternation-based algorithm for co-segmentation, BiCoS, which is simpler than many of its predecessors, and yet has superior performance on standard benchmark image datasets.