具有不同任务空间的深度混合专家

Jianping Fan, Tianyi Zhao, Zhenzhong Kuang, Zhou Yu, Jun Yu
{"title":"具有不同任务空间的深度混合专家","authors":"Jianping Fan, Tianyi Zhao, Zhenzhong Kuang, Zhou Yu, Jun Yu","doi":"10.1109/ICMLA.2017.00-74","DOIUrl":null,"url":null,"abstract":"In this paper, a deep mixture algorithm is developed to support large-scale visual recognition (e.g., recognizing tens of thousands of object classes) by seamlessly combining a set of base deep CNNs (AlexNet) with diverse task spaces, e.g., such base deep CNNs (i.e., diverse experts) are trained to recognize different subsets of tens of thousands of object classes rather than the same set of object classes. Our experimental results have demonstrated that our deep mixture algorithm can achieve very competitive results on large-scale visual recognition.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"1 1","pages":"721-725"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Mixture of Experts with Diverse Task Spaces\",\"authors\":\"Jianping Fan, Tianyi Zhao, Zhenzhong Kuang, Zhou Yu, Jun Yu\",\"doi\":\"10.1109/ICMLA.2017.00-74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a deep mixture algorithm is developed to support large-scale visual recognition (e.g., recognizing tens of thousands of object classes) by seamlessly combining a set of base deep CNNs (AlexNet) with diverse task spaces, e.g., such base deep CNNs (i.e., diverse experts) are trained to recognize different subsets of tens of thousands of object classes rather than the same set of object classes. Our experimental results have demonstrated that our deep mixture algorithm can achieve very competitive results on large-scale visual recognition.\",\"PeriodicalId\":6636,\"journal\":{\"name\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"1 1\",\"pages\":\"721-725\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2017.00-74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文通过将一组基本深度cnn (AlexNet)与不同的任务空间无缝结合,开发了一种深度混合算法来支持大规模视觉识别(例如,识别数万个对象类),例如,训练这些基本深度cnn(即不同的专家)识别数万个对象类的不同子集,而不是同一组对象类。我们的实验结果表明,我们的深度混合算法在大规模视觉识别上可以取得非常有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Mixture of Experts with Diverse Task Spaces
In this paper, a deep mixture algorithm is developed to support large-scale visual recognition (e.g., recognizing tens of thousands of object classes) by seamlessly combining a set of base deep CNNs (AlexNet) with diverse task spaces, e.g., such base deep CNNs (i.e., diverse experts) are trained to recognize different subsets of tens of thousands of object classes rather than the same set of object classes. Our experimental results have demonstrated that our deep mixture algorithm can achieve very competitive results on large-scale visual recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信