选择公理在直觉上是错误的(在大多数情况下)

C. McCarty, S. Shapiro, A. Klev
{"title":"选择公理在直觉上是错误的(在大多数情况下)","authors":"C. McCarty, S. Shapiro, A. Klev","doi":"10.1017/bsl.2022.22","DOIUrl":null,"url":null,"abstract":"Abstract There seems to be a view that intuitionists not only take the Axiom of Choice (AC) to be true, but also believe it a consequence of their fundamental posits. Widespread or not, this view is largely mistaken. This article offers a brief, yet comprehensive, overview of the status of AC in various intuitionistic and constructivist systems. The survey makes it clear that the Axiom of Choice fails to be a theorem in most contexts and is even outright false in some important contexts. Of the systems surveyed, only intensional type theory renders AC a theorem, but the extent of AC in that theory does not include, for instance, real analysis. Only a small amount of extensionality is required in order for the obvious proof an intuitionist might offer for AC to break down.","PeriodicalId":22265,"journal":{"name":"The Bulletin of Symbolic Logic","volume":"13 1","pages":"71 - 96"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE AXIOM OF CHOICE IS FALSE INTUITIONISTICALLY (IN MOST CONTEXTS)\",\"authors\":\"C. McCarty, S. Shapiro, A. Klev\",\"doi\":\"10.1017/bsl.2022.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract There seems to be a view that intuitionists not only take the Axiom of Choice (AC) to be true, but also believe it a consequence of their fundamental posits. Widespread or not, this view is largely mistaken. This article offers a brief, yet comprehensive, overview of the status of AC in various intuitionistic and constructivist systems. The survey makes it clear that the Axiom of Choice fails to be a theorem in most contexts and is even outright false in some important contexts. Of the systems surveyed, only intensional type theory renders AC a theorem, but the extent of AC in that theory does not include, for instance, real analysis. Only a small amount of extensionality is required in order for the obvious proof an intuitionist might offer for AC to break down.\",\"PeriodicalId\":22265,\"journal\":{\"name\":\"The Bulletin of Symbolic Logic\",\"volume\":\"13 1\",\"pages\":\"71 - 96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Bulletin of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/bsl.2022.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bulletin of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/bsl.2022.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

似乎有一种观点认为,直觉主义者不仅认为选择公理(AC)是正确的,而且认为这是他们基本假设的结果。不管是否普遍,这种观点在很大程度上是错误的。本文简要而全面地概述了交流在各种直觉主义和建构主义体系中的地位。调查清楚地表明,选择公理在大多数情况下不能成为定理,在一些重要的情况下甚至是完全错误的。在所调查的系统中,只有内涵类型理论使AC成为定理,但该理论中AC的范围不包括,例如,实分析。只需要少量的延伸性,直觉主义者就可以提供AC失效的明显证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE AXIOM OF CHOICE IS FALSE INTUITIONISTICALLY (IN MOST CONTEXTS)
Abstract There seems to be a view that intuitionists not only take the Axiom of Choice (AC) to be true, but also believe it a consequence of their fundamental posits. Widespread or not, this view is largely mistaken. This article offers a brief, yet comprehensive, overview of the status of AC in various intuitionistic and constructivist systems. The survey makes it clear that the Axiom of Choice fails to be a theorem in most contexts and is even outright false in some important contexts. Of the systems surveyed, only intensional type theory renders AC a theorem, but the extent of AC in that theory does not include, for instance, real analysis. Only a small amount of extensionality is required in order for the obvious proof an intuitionist might offer for AC to break down.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信