一种用于知识测试个体轨迹形成的神经网络设计方法

IF 0.4 Q4 MATHEMATICS, APPLIED
E. V. Chumakova, D. Korneev, M. Gasparian
{"title":"一种用于知识测试个体轨迹形成的神经网络设计方法","authors":"E. V. Chumakova, D. Korneev, M. Gasparian","doi":"10.37791/2687-0649-2022-17-5-102-115","DOIUrl":null,"url":null,"abstract":"The paper discusses the issues of implementing an adaptive testing system based on the use of artificial neural network (INS) modules, which should solve the problem of intelligent choice of the next question, forming an individual testing trajectory. The aim of the work is to increase the accuracy of the INS to form the level of complexity of the next test question for two types of architectures – direct propagation (FNN – Feedforward Neural Network) and recurrent with long-term short-term memory (LSTM – Long-Short Term Memory). The data affecting the quality of training are analyzed, the architectures of the input layer of the direct propagation INS are considered, which have significantly improved the quality of neural networks. To solve the problem of choosing the thematic block of the question, a hybrid module structure is proposed, including the INS itself and a software module for algorithmic processing of the results obtained from the INS. A study of the feasibility of using direct propagation ANNs in comparison with the LSTM architecture was carried out, the input parameters of the network were identified, various architectures and parameters of the ANN training were compared (algorithms for updating weights, loss functions, the number of training epochs, packet sizes). The substantiation of the choice of a direct distribution network in the structure of the hybrid module for selecting a thematic block is given. The above results were obtained using the Keras high-level library, which allows you to quickly start at the initial stages of research and get the first results. Traditionally, learning has taken place over a large number of eras.","PeriodicalId":44195,"journal":{"name":"Journal of Applied Mathematics & Informatics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach to the design of a neural network for the formation of an individual trajectory of knowledge testing\",\"authors\":\"E. V. Chumakova, D. Korneev, M. Gasparian\",\"doi\":\"10.37791/2687-0649-2022-17-5-102-115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper discusses the issues of implementing an adaptive testing system based on the use of artificial neural network (INS) modules, which should solve the problem of intelligent choice of the next question, forming an individual testing trajectory. The aim of the work is to increase the accuracy of the INS to form the level of complexity of the next test question for two types of architectures – direct propagation (FNN – Feedforward Neural Network) and recurrent with long-term short-term memory (LSTM – Long-Short Term Memory). The data affecting the quality of training are analyzed, the architectures of the input layer of the direct propagation INS are considered, which have significantly improved the quality of neural networks. To solve the problem of choosing the thematic block of the question, a hybrid module structure is proposed, including the INS itself and a software module for algorithmic processing of the results obtained from the INS. A study of the feasibility of using direct propagation ANNs in comparison with the LSTM architecture was carried out, the input parameters of the network were identified, various architectures and parameters of the ANN training were compared (algorithms for updating weights, loss functions, the number of training epochs, packet sizes). The substantiation of the choice of a direct distribution network in the structure of the hybrid module for selecting a thematic block is given. The above results were obtained using the Keras high-level library, which allows you to quickly start at the initial stages of research and get the first results. Traditionally, learning has taken place over a large number of eras.\",\"PeriodicalId\":44195,\"journal\":{\"name\":\"Journal of Applied Mathematics & Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics & Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37791/2687-0649-2022-17-5-102-115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics & Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37791/2687-0649-2022-17-5-102-115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了基于人工神经网络模块的自适应测试系统的实现问题,该系统应解决下一题的智能选择问题,形成单独的测试轨迹。这项工作的目的是提高INS的准确性,以形成两种结构类型下一个测试问题的复杂程度-直接传播(FNN -前馈神经网络)和循环与长短期记忆(LSTM -长短期记忆)。分析了影响训练质量的数据,考虑了直接传播惯性神经网络的输入层结构,显著提高了神经网络的训练质量。为了解决题目主题块的选择问题,提出了一种混合模块结构,包括INS本身和对INS结果进行算法处理的软件模块。研究了使用直接传播神经网络与LSTM结构的可行性,识别了网络的输入参数,比较了神经网络训练的各种结构和参数(更新权值、损失函数、训练epoch数、数据包大小的算法)。给出了选择主题块的混合模块结构中直接配电网选择的依据。上面的结果是使用Keras高级库获得的,它允许您快速地从研究的初始阶段开始并获得第一批结果。传统上,学习发生在许多时代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach to the design of a neural network for the formation of an individual trajectory of knowledge testing
The paper discusses the issues of implementing an adaptive testing system based on the use of artificial neural network (INS) modules, which should solve the problem of intelligent choice of the next question, forming an individual testing trajectory. The aim of the work is to increase the accuracy of the INS to form the level of complexity of the next test question for two types of architectures – direct propagation (FNN – Feedforward Neural Network) and recurrent with long-term short-term memory (LSTM – Long-Short Term Memory). The data affecting the quality of training are analyzed, the architectures of the input layer of the direct propagation INS are considered, which have significantly improved the quality of neural networks. To solve the problem of choosing the thematic block of the question, a hybrid module structure is proposed, including the INS itself and a software module for algorithmic processing of the results obtained from the INS. A study of the feasibility of using direct propagation ANNs in comparison with the LSTM architecture was carried out, the input parameters of the network were identified, various architectures and parameters of the ANN training were compared (algorithms for updating weights, loss functions, the number of training epochs, packet sizes). The substantiation of the choice of a direct distribution network in the structure of the hybrid module for selecting a thematic block is given. The above results were obtained using the Keras high-level library, which allows you to quickly start at the initial stages of research and get the first results. Traditionally, learning has taken place over a large number of eras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信