利用Naïve贝叶斯算法分析推特上巴布亚运动的情绪

T. Mantoro, Meita Merdianti, M. A. Ayu
{"title":"利用Naïve贝叶斯算法分析推特上巴布亚运动的情绪","authors":"T. Mantoro, Meita Merdianti, M. A. Ayu","doi":"10.1109/ICCED53389.2021.9664868","DOIUrl":null,"url":null,"abstract":"Issue on Papua has long been one of highlighted matters for the Indonesian government. Discussions on such issue have been continuously going on not only in the government level but also in the general public. Social media, in this case Twitter, becomes one of the platforms where people’s expressing their view on this issue. This paper focuses on sentiment analysis to compare three related keywords namely \"Papua Merdeka (Free Papua)\", \"Papua bagian Indonesia (Papua part of Indonesia)\", and \"Otsus Papua\" using Twitter data to determine the classification of tweets accurately, whether positive, negative, or neutral. Sentiment analysis of tweets from Twitter uses the Naïve Bayes Multinomial algorithm. This paper provides an analysis of how the community reacts and their opinions on the data obtained, comparisons of public opinion via Twitter social media from 2018 to 30 September 2021 for consideration, and the extent to which the Indonesian government has tried to maximize development and improve services for the people in the Papua region.","PeriodicalId":6800,"journal":{"name":"2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED)","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sentiment Analysis of the Papuan Movement on Twitter Using Naïve Bayes Algorithm\",\"authors\":\"T. Mantoro, Meita Merdianti, M. A. Ayu\",\"doi\":\"10.1109/ICCED53389.2021.9664868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Issue on Papua has long been one of highlighted matters for the Indonesian government. Discussions on such issue have been continuously going on not only in the government level but also in the general public. Social media, in this case Twitter, becomes one of the platforms where people’s expressing their view on this issue. This paper focuses on sentiment analysis to compare three related keywords namely \\\"Papua Merdeka (Free Papua)\\\", \\\"Papua bagian Indonesia (Papua part of Indonesia)\\\", and \\\"Otsus Papua\\\" using Twitter data to determine the classification of tweets accurately, whether positive, negative, or neutral. Sentiment analysis of tweets from Twitter uses the Naïve Bayes Multinomial algorithm. This paper provides an analysis of how the community reacts and their opinions on the data obtained, comparisons of public opinion via Twitter social media from 2018 to 30 September 2021 for consideration, and the extent to which the Indonesian government has tried to maximize development and improve services for the people in the Papua region.\",\"PeriodicalId\":6800,\"journal\":{\"name\":\"2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED)\",\"volume\":\"1 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCED53389.2021.9664868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCED53389.2021.9664868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

巴布亚问题一直是印尼政府关注的重点问题之一。关于这一问题的讨论不仅在政府层面持续进行,而且在公众中也一直在进行。社交媒体,在这里是Twitter,成为人们表达对这个问题看法的平台之一。本文的重点是情感分析,比较三个相关的关键词,即“巴布亚默德卡(自由巴布亚)”,“巴布亚巴吉安印度尼西亚(印度尼西亚的巴布亚部分)”和“Otsus巴布亚”,利用Twitter数据准确地确定推文的分类,无论是积极的,消极的,还是中立的。Twitter tweets的情感分析使用Naïve贝叶斯多项式算法。本文分析了社区对获得的数据的反应和他们的意见,比较了2018年至2021年9月30日通过Twitter社交媒体的公众意见,以供参考,以及印度尼西亚政府在多大程度上试图最大限度地发展和改善为巴布亚地区人民提供的服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis of the Papuan Movement on Twitter Using Naïve Bayes Algorithm
Issue on Papua has long been one of highlighted matters for the Indonesian government. Discussions on such issue have been continuously going on not only in the government level but also in the general public. Social media, in this case Twitter, becomes one of the platforms where people’s expressing their view on this issue. This paper focuses on sentiment analysis to compare three related keywords namely "Papua Merdeka (Free Papua)", "Papua bagian Indonesia (Papua part of Indonesia)", and "Otsus Papua" using Twitter data to determine the classification of tweets accurately, whether positive, negative, or neutral. Sentiment analysis of tweets from Twitter uses the Naïve Bayes Multinomial algorithm. This paper provides an analysis of how the community reacts and their opinions on the data obtained, comparisons of public opinion via Twitter social media from 2018 to 30 September 2021 for consideration, and the extent to which the Indonesian government has tried to maximize development and improve services for the people in the Papua region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信