关于Pellnomial系数和Pell-Catalan数

IF 0.3 Q4 MATHEMATICS
A. Ipek
{"title":"关于Pellnomial系数和Pell-Catalan数","authors":"A. Ipek","doi":"10.12697/acutm.2022.26.14","DOIUrl":null,"url":null,"abstract":"In this paper, we first give the Pascal’s identity for Pellnomial coefficients and then we show that the Pellnomial coefficients are integers. We obtain that the product of r consecutive Pell numbers is divisible by the Pell analog of r!. Also, we introduce the divisibility theorems between Pell numbers and Pellnomial coefficients. Furthermore, we first define Pell–Catalan numbers and then we derive two formulas for presenting Pell–Catalan numbers.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"144 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Pellnomial coefficients and Pell-Catalan numbers\",\"authors\":\"A. Ipek\",\"doi\":\"10.12697/acutm.2022.26.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first give the Pascal’s identity for Pellnomial coefficients and then we show that the Pellnomial coefficients are integers. We obtain that the product of r consecutive Pell numbers is divisible by the Pell analog of r!. Also, we introduce the divisibility theorems between Pell numbers and Pellnomial coefficients. Furthermore, we first define Pell–Catalan numbers and then we derive two formulas for presenting Pell–Catalan numbers.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"144 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2022.26.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2022.26.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文首先给出了多项式系数的帕斯卡恒等式,然后证明了多项式系数是整数。我们得到r个连续的佩尔数的乘积可以被r!的佩尔类似数整除。同时,我们还引入了佩尔数与佩尔项系数之间的可整除定理。进一步,我们首先定义了Pell-Catalan数,然后推导了两个表示Pell-Catalan数的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Pellnomial coefficients and Pell-Catalan numbers
In this paper, we first give the Pascal’s identity for Pellnomial coefficients and then we show that the Pellnomial coefficients are integers. We obtain that the product of r consecutive Pell numbers is divisible by the Pell analog of r!. Also, we introduce the divisibility theorems between Pell numbers and Pellnomial coefficients. Furthermore, we first define Pell–Catalan numbers and then we derive two formulas for presenting Pell–Catalan numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信