{"title":"音乐力量的测量模型","authors":"Reinhard Blutner, Peter beim Graben","doi":"10.1080/17459737.2020.1716404","DOIUrl":null,"url":null,"abstract":"Metaphors involving motion and forces are a source of inspiration for understanding tonal music and tonal harmonies since ancient times. Starting with the rise of quantum cognition, the modern interactional conception of forces as developed in gauge theory has recently entered the field of theoretical musicology. We develop a gauge model of tonal attraction based on SU(2) symmetry. This model comprises two earlier attempts, the phase model grounded on U(1) gauge symmetry, and the spatial deformation model derived from SO(2) gauge symmetry. In the neutral, force-free case both submodels agree and generate the same predictions as a simple qubit approach. However, there are several differences in the force-driven case. It is claimed that the deformation model gives a proper description of static tonal attraction. The full model combines the deformation model with the phase model through SU(2) gauge symmetry and unifies static and dynamic tonal attraction.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":"11 1","pages":"17 - 36"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Gauge models of musical forces\",\"authors\":\"Reinhard Blutner, Peter beim Graben\",\"doi\":\"10.1080/17459737.2020.1716404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metaphors involving motion and forces are a source of inspiration for understanding tonal music and tonal harmonies since ancient times. Starting with the rise of quantum cognition, the modern interactional conception of forces as developed in gauge theory has recently entered the field of theoretical musicology. We develop a gauge model of tonal attraction based on SU(2) symmetry. This model comprises two earlier attempts, the phase model grounded on U(1) gauge symmetry, and the spatial deformation model derived from SO(2) gauge symmetry. In the neutral, force-free case both submodels agree and generate the same predictions as a simple qubit approach. However, there are several differences in the force-driven case. It is claimed that the deformation model gives a proper description of static tonal attraction. The full model combines the deformation model with the phase model through SU(2) gauge symmetry and unifies static and dynamic tonal attraction.\",\"PeriodicalId\":50138,\"journal\":{\"name\":\"Journal of Mathematics and Music\",\"volume\":\"11 1\",\"pages\":\"17 - 36\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Music\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17459737.2020.1716404\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2020.1716404","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Metaphors involving motion and forces are a source of inspiration for understanding tonal music and tonal harmonies since ancient times. Starting with the rise of quantum cognition, the modern interactional conception of forces as developed in gauge theory has recently entered the field of theoretical musicology. We develop a gauge model of tonal attraction based on SU(2) symmetry. This model comprises two earlier attempts, the phase model grounded on U(1) gauge symmetry, and the spatial deformation model derived from SO(2) gauge symmetry. In the neutral, force-free case both submodels agree and generate the same predictions as a simple qubit approach. However, there are several differences in the force-driven case. It is claimed that the deformation model gives a proper description of static tonal attraction. The full model combines the deformation model with the phase model through SU(2) gauge symmetry and unifies static and dynamic tonal attraction.
期刊介绍:
Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.