音乐力量的测量模型

IF 0.5 2区 数学 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Reinhard Blutner, Peter beim Graben
{"title":"音乐力量的测量模型","authors":"Reinhard Blutner, Peter beim Graben","doi":"10.1080/17459737.2020.1716404","DOIUrl":null,"url":null,"abstract":"Metaphors involving motion and forces are a source of inspiration for understanding tonal music and tonal harmonies since ancient times. Starting with the rise of quantum cognition, the modern interactional conception of forces as developed in gauge theory has recently entered the field of theoretical musicology. We develop a gauge model of tonal attraction based on SU(2) symmetry. This model comprises two earlier attempts, the phase model grounded on U(1) gauge symmetry, and the spatial deformation model derived from SO(2) gauge symmetry. In the neutral, force-free case both submodels agree and generate the same predictions as a simple qubit approach. However, there are several differences in the force-driven case. It is claimed that the deformation model gives a proper description of static tonal attraction. The full model combines the deformation model with the phase model through SU(2) gauge symmetry and unifies static and dynamic tonal attraction.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":"11 1","pages":"17 - 36"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Gauge models of musical forces\",\"authors\":\"Reinhard Blutner, Peter beim Graben\",\"doi\":\"10.1080/17459737.2020.1716404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metaphors involving motion and forces are a source of inspiration for understanding tonal music and tonal harmonies since ancient times. Starting with the rise of quantum cognition, the modern interactional conception of forces as developed in gauge theory has recently entered the field of theoretical musicology. We develop a gauge model of tonal attraction based on SU(2) symmetry. This model comprises two earlier attempts, the phase model grounded on U(1) gauge symmetry, and the spatial deformation model derived from SO(2) gauge symmetry. In the neutral, force-free case both submodels agree and generate the same predictions as a simple qubit approach. However, there are several differences in the force-driven case. It is claimed that the deformation model gives a proper description of static tonal attraction. The full model combines the deformation model with the phase model through SU(2) gauge symmetry and unifies static and dynamic tonal attraction.\",\"PeriodicalId\":50138,\"journal\":{\"name\":\"Journal of Mathematics and Music\",\"volume\":\"11 1\",\"pages\":\"17 - 36\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Music\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17459737.2020.1716404\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2020.1716404","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 11

摘要

自古以来,涉及运动和力量的隐喻是理解调性音乐和调性和声的灵感来源。从量子认知的兴起开始,在规范理论中发展起来的现代相互作用的力概念最近进入了理论音乐学领域。我们建立了一个基于SU(2)对称性的调性吸引测度模型。该模型包括两个早期的尝试,即基于U(1)规范对称的相位模型和基于SO(2)规范对称的空间变形模型。在中性、无力的情况下,两个子模型一致,并产生与简单量子位方法相同的预测。然而,在力驱动的情况下有几个不同之处。认为变形模型能较好地描述静态调性吸引。全模型通过SU(2)规范对称将变形模型和相位模型结合起来,将静态和动态的调性吸引统一起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gauge models of musical forces
Metaphors involving motion and forces are a source of inspiration for understanding tonal music and tonal harmonies since ancient times. Starting with the rise of quantum cognition, the modern interactional conception of forces as developed in gauge theory has recently entered the field of theoretical musicology. We develop a gauge model of tonal attraction based on SU(2) symmetry. This model comprises two earlier attempts, the phase model grounded on U(1) gauge symmetry, and the spatial deformation model derived from SO(2) gauge symmetry. In the neutral, force-free case both submodels agree and generate the same predictions as a simple qubit approach. However, there are several differences in the force-driven case. It is claimed that the deformation model gives a proper description of static tonal attraction. The full model combines the deformation model with the phase model through SU(2) gauge symmetry and unifies static and dynamic tonal attraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics and Music
Journal of Mathematics and Music 数学-数学跨学科应用
CiteScore
1.90
自引率
18.20%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信