{"title":"m波段完全重构线性相位滤波器组","authors":"X. Xie, S. Chan, T. Yuk","doi":"10.1109/SSP.2001.955354","DOIUrl":null,"url":null,"abstract":"This paper studies the design of M-channel perfect-reconstruction (PR) linear-phase (LP) filter banks (FBs) with M=2/sup k/ using a tree-structured FB. It is based on a observation of Fliege(1995) that the length of the analysis filters is decreased by a factor of two when the depth of the tree is increased by one, while its transition bandwidth is increased by the same factor. A lattice-based 2-channel LP FB is chosen because the frequency responses of the lowpass and highpass analysis (synthesis) filters can be designed to be closely symmetric to the other around /spl pi//2. By properly selecting the filter length, transition bandwidth. and stopband attenuation of the 2-channel PR LP FBs at each level of the tree structure, it is possible to design uniform PR LP FB with excellent frequency characteristic and much lower system delay.","PeriodicalId":70952,"journal":{"name":"信号处理","volume":"10 1","pages":"583-586"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"M-band perfect-reconstruction linear-phase filter banks\",\"authors\":\"X. Xie, S. Chan, T. Yuk\",\"doi\":\"10.1109/SSP.2001.955354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the design of M-channel perfect-reconstruction (PR) linear-phase (LP) filter banks (FBs) with M=2/sup k/ using a tree-structured FB. It is based on a observation of Fliege(1995) that the length of the analysis filters is decreased by a factor of two when the depth of the tree is increased by one, while its transition bandwidth is increased by the same factor. A lattice-based 2-channel LP FB is chosen because the frequency responses of the lowpass and highpass analysis (synthesis) filters can be designed to be closely symmetric to the other around /spl pi//2. By properly selecting the filter length, transition bandwidth. and stopband attenuation of the 2-channel PR LP FBs at each level of the tree structure, it is possible to design uniform PR LP FB with excellent frequency characteristic and much lower system delay.\",\"PeriodicalId\":70952,\"journal\":{\"name\":\"信号处理\",\"volume\":\"10 1\",\"pages\":\"583-586\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信号处理\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2001.955354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信号处理","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/SSP.2001.955354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper studies the design of M-channel perfect-reconstruction (PR) linear-phase (LP) filter banks (FBs) with M=2/sup k/ using a tree-structured FB. It is based on a observation of Fliege(1995) that the length of the analysis filters is decreased by a factor of two when the depth of the tree is increased by one, while its transition bandwidth is increased by the same factor. A lattice-based 2-channel LP FB is chosen because the frequency responses of the lowpass and highpass analysis (synthesis) filters can be designed to be closely symmetric to the other around /spl pi//2. By properly selecting the filter length, transition bandwidth. and stopband attenuation of the 2-channel PR LP FBs at each level of the tree structure, it is possible to design uniform PR LP FB with excellent frequency characteristic and much lower system delay.
期刊介绍:
Journal of Signal Processing is an academic journal supervised by China Association for Science and Technology and sponsored by China Institute of Electronics. The journal is an academic journal that reflects the latest research results and technological progress in the field of signal processing and related disciplines. It covers academic papers and review articles on new theories, new ideas, and new technologies in the field of signal processing. The journal aims to provide a platform for academic exchanges for scientific researchers and engineering and technical personnel engaged in basic research and applied research in signal processing, thereby promoting the development of information science and technology. At present, the journal has been included in the three major domestic core journal databases "China Science Citation Database (CSCD), China Science and Technology Core Journals (CSTPCD), Chinese Core Journals Overview" and Coaj. It is also included in many foreign databases such as Scopus, CSA, EBSCO host, INSPEC, JST, etc.