基于双注意感知网络的遥感场景分类

Yue Gao, Jun Shi, Jun Li, Ruoyu Wang
{"title":"基于双注意感知网络的遥感场景分类","authors":"Yue Gao, Jun Shi, Jun Li, Ruoyu Wang","doi":"10.1109/ICIVC50857.2020.9177460","DOIUrl":null,"url":null,"abstract":"Remote sensing scene classification is of great importance to remote sensing image analysis. Most existing methods based on Convolutional Neural Network (CNN) fail to discriminate the crucial information from the complex scene content due to the intraclass diversity. In this paper, we propose a dual attention-aware network for remote sensing scene classification. Specifically, we use two kinds of attention modules (i.e. channel and spatial attentions) to explore the contextual dependencies from the channel and spatial dimensions respectively. The channel attention module intends to capture the channel-wise feature dependencies and further exploit the significant semantic attention. On the other hand, the spatial attention module aims to concentrate the attentive spatial locations and thus discover the discriminative parts inside the scene. The outputs of two attention modules are finally integrated as the attention-aware feature representation for improving classification performance. Experimental results on RSSCN7 and AID benchmark datasets show the effectiveness and superiority of the proposed methods for scene classification in remote sensing imagery.","PeriodicalId":6806,"journal":{"name":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","volume":"109 1","pages":"171-175"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Remote Sensing Scene Classification with Dual Attention-Aware Network\",\"authors\":\"Yue Gao, Jun Shi, Jun Li, Ruoyu Wang\",\"doi\":\"10.1109/ICIVC50857.2020.9177460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote sensing scene classification is of great importance to remote sensing image analysis. Most existing methods based on Convolutional Neural Network (CNN) fail to discriminate the crucial information from the complex scene content due to the intraclass diversity. In this paper, we propose a dual attention-aware network for remote sensing scene classification. Specifically, we use two kinds of attention modules (i.e. channel and spatial attentions) to explore the contextual dependencies from the channel and spatial dimensions respectively. The channel attention module intends to capture the channel-wise feature dependencies and further exploit the significant semantic attention. On the other hand, the spatial attention module aims to concentrate the attentive spatial locations and thus discover the discriminative parts inside the scene. The outputs of two attention modules are finally integrated as the attention-aware feature representation for improving classification performance. Experimental results on RSSCN7 and AID benchmark datasets show the effectiveness and superiority of the proposed methods for scene classification in remote sensing imagery.\",\"PeriodicalId\":6806,\"journal\":{\"name\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"109 1\",\"pages\":\"171-175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC50857.2020.9177460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC50857.2020.9177460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

遥感场景分类是遥感图像分析的重要内容。现有的基于卷积神经网络(CNN)的方法由于类内多样性,无法从复杂的场景内容中识别出关键信息。本文提出了一种用于遥感场景分类的双注意感知网络。具体而言,我们使用两种注意模块(即通道注意和空间注意)分别从通道和空间维度探索语境依赖关系。通道注意模块旨在捕获通道特征依赖,并进一步利用重要的语义注意。另一方面,空间注意模块旨在集中注意的空间位置,从而发现场景内部的判别部分。最后将两个注意模块的输出集成为注意感知特征表示,以提高分类性能。在RSSCN7和AID基准数据集上的实验结果表明了所提方法在遥感影像场景分类中的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remote Sensing Scene Classification with Dual Attention-Aware Network
Remote sensing scene classification is of great importance to remote sensing image analysis. Most existing methods based on Convolutional Neural Network (CNN) fail to discriminate the crucial information from the complex scene content due to the intraclass diversity. In this paper, we propose a dual attention-aware network for remote sensing scene classification. Specifically, we use two kinds of attention modules (i.e. channel and spatial attentions) to explore the contextual dependencies from the channel and spatial dimensions respectively. The channel attention module intends to capture the channel-wise feature dependencies and further exploit the significant semantic attention. On the other hand, the spatial attention module aims to concentrate the attentive spatial locations and thus discover the discriminative parts inside the scene. The outputs of two attention modules are finally integrated as the attention-aware feature representation for improving classification performance. Experimental results on RSSCN7 and AID benchmark datasets show the effectiveness and superiority of the proposed methods for scene classification in remote sensing imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信