关于趋势的稳健测试

A. Skrobotov
{"title":"关于趋势的稳健测试","authors":"A. Skrobotov","doi":"10.2139/ssrn.3893116","DOIUrl":null,"url":null,"abstract":"This paper provides a simple approach for robust testing for the trend function in the time series under uncertainty over the order of integration of the error term. The proposed approach relies on the asymptotic normality of the trend coefficient estimator and utilises t-statistic approach of Ibragimov and Muler (2010) based on splitting the sample. The Monte-Carlo results demonstrate that the approach has the correct finite sample size and favorable finite sample power properties for all data generating processes considered. The proposed approach is robust to very general assumptions on the error term including various forms of non-stationary volatility and heavy tails.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Robust Testing for Trend\",\"authors\":\"A. Skrobotov\",\"doi\":\"10.2139/ssrn.3893116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a simple approach for robust testing for the trend function in the time series under uncertainty over the order of integration of the error term. The proposed approach relies on the asymptotic normality of the trend coefficient estimator and utilises t-statistic approach of Ibragimov and Muler (2010) based on splitting the sample. The Monte-Carlo results demonstrate that the approach has the correct finite sample size and favorable finite sample power properties for all data generating processes considered. The proposed approach is robust to very general assumptions on the error term including various forms of non-stationary volatility and heavy tails.\",\"PeriodicalId\":11465,\"journal\":{\"name\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3893116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3893116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提供了一种简单的方法来检验在误差项的积分阶数上不确定的时间序列中趋势函数的鲁棒性。所提出的方法依赖于趋势系数估计量的渐近正态性,并利用Ibragimov和Muler(2010)基于分裂样本的t统计方法。蒙特卡罗结果表明,该方法具有正确的有限样本大小和良好的有限样本功率特性,适用于所有考虑的数据生成过程。所提出的方法对误差项的非常一般的假设具有鲁棒性,包括各种形式的非平稳波动和重尾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Robust Testing for Trend
This paper provides a simple approach for robust testing for the trend function in the time series under uncertainty over the order of integration of the error term. The proposed approach relies on the asymptotic normality of the trend coefficient estimator and utilises t-statistic approach of Ibragimov and Muler (2010) based on splitting the sample. The Monte-Carlo results demonstrate that the approach has the correct finite sample size and favorable finite sample power properties for all data generating processes considered. The proposed approach is robust to very general assumptions on the error term including various forms of non-stationary volatility and heavy tails.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信