{"title":"图的伪谱能","authors":"Hahder Shelash, Ali A. Shukur","doi":"10.22052/IJMC.2020.221182.1488","DOIUrl":null,"url":null,"abstract":"Let G be a simple graph of order N, the concept of resol-vent energy of graph G; i.e. ER(G)=sum_{i=1}^N (N - λi)^{-1} was established in Resolvent Energy of Graphs, MATCH commun. Math. comput. chem., 75 (2016), 279-290. In this paper we study the set of resol-vents energies of graph G which it is called pseudospectrum energy of graph PS(G). For large value resolvent energy of graph ER(G) and real eigenvalues, we establish a number of properties of PS(G): For complex eigenvalues, some examples of PS(G) are given.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pseudospectrum Energy of Graphs\",\"authors\":\"Hahder Shelash, Ali A. Shukur\",\"doi\":\"10.22052/IJMC.2020.221182.1488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a simple graph of order N, the concept of resol-vent energy of graph G; i.e. ER(G)=sum_{i=1}^N (N - λi)^{-1} was established in Resolvent Energy of Graphs, MATCH commun. Math. comput. chem., 75 (2016), 279-290. In this paper we study the set of resol-vents energies of graph G which it is called pseudospectrum energy of graph PS(G). For large value resolvent energy of graph ER(G) and real eigenvalues, we establish a number of properties of PS(G): For complex eigenvalues, some examples of PS(G) are given.\",\"PeriodicalId\":14545,\"journal\":{\"name\":\"Iranian journal of mathematical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of mathematical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/IJMC.2020.221182.1488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2020.221182.1488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Let G be a simple graph of order N, the concept of resol-vent energy of graph G; i.e. ER(G)=sum_{i=1}^N (N - λi)^{-1} was established in Resolvent Energy of Graphs, MATCH commun. Math. comput. chem., 75 (2016), 279-290. In this paper we study the set of resol-vents energies of graph G which it is called pseudospectrum energy of graph PS(G). For large value resolvent energy of graph ER(G) and real eigenvalues, we establish a number of properties of PS(G): For complex eigenvalues, some examples of PS(G) are given.