{"title":"超冷介子负离子的产生","authors":"V. Dudnikov, A. Dudnikov","doi":"10.1063/1.5083774","DOIUrl":null,"url":null,"abstract":"A new, efficient method to produce ultracold negative muon ions is proposed. The muonium atom is made up of an antimuon and an electron and is given the chemical symbol Mu. A second electron with binding energy or electron affinity of 0.75 eV makes the Mu- ion, which is in many ways almost identical to the H- ion that is used for charge-exchange injection into most proton particle accelerators. Muonium negative ions were observed in 1987 by interactions of muons with a foil. Using the foil charge-exchange approach, the efficiency of transformation of muons to negative muonium ions has been very low ~10-4. However, by using a hot tungsten or palladium single crystal foil or aerogel treated by cesium deposition, the production efficiency can be improved up to 50%. The process described here has surface muons focused onto a tungsten or palladium single crystal foil or aerogel (that can be heated up to 2000 Celsius) and partially covered by a cesium layer to provide a minimal work function. The negative muon ions can be extracted by a DC electric field and further accelerated by a linac and stripped in a thin foil. Charge exchange with a. dense flow of positive or negative ions is proposed for conversion of slow muonium atoms into positive and negative muonium ions","PeriodicalId":8827,"journal":{"name":"arXiv: Instrumentation and Detectors","volume":"51 1","pages":"060001"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ultracold muonium negative ion production\",\"authors\":\"V. Dudnikov, A. Dudnikov\",\"doi\":\"10.1063/1.5083774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new, efficient method to produce ultracold negative muon ions is proposed. The muonium atom is made up of an antimuon and an electron and is given the chemical symbol Mu. A second electron with binding energy or electron affinity of 0.75 eV makes the Mu- ion, which is in many ways almost identical to the H- ion that is used for charge-exchange injection into most proton particle accelerators. Muonium negative ions were observed in 1987 by interactions of muons with a foil. Using the foil charge-exchange approach, the efficiency of transformation of muons to negative muonium ions has been very low ~10-4. However, by using a hot tungsten or palladium single crystal foil or aerogel treated by cesium deposition, the production efficiency can be improved up to 50%. The process described here has surface muons focused onto a tungsten or palladium single crystal foil or aerogel (that can be heated up to 2000 Celsius) and partially covered by a cesium layer to provide a minimal work function. The negative muon ions can be extracted by a DC electric field and further accelerated by a linac and stripped in a thin foil. Charge exchange with a. dense flow of positive or negative ions is proposed for conversion of slow muonium atoms into positive and negative muonium ions\",\"PeriodicalId\":8827,\"journal\":{\"name\":\"arXiv: Instrumentation and Detectors\",\"volume\":\"51 1\",\"pages\":\"060001\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Instrumentation and Detectors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5083774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Instrumentation and Detectors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5083774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new, efficient method to produce ultracold negative muon ions is proposed. The muonium atom is made up of an antimuon and an electron and is given the chemical symbol Mu. A second electron with binding energy or electron affinity of 0.75 eV makes the Mu- ion, which is in many ways almost identical to the H- ion that is used for charge-exchange injection into most proton particle accelerators. Muonium negative ions were observed in 1987 by interactions of muons with a foil. Using the foil charge-exchange approach, the efficiency of transformation of muons to negative muonium ions has been very low ~10-4. However, by using a hot tungsten or palladium single crystal foil or aerogel treated by cesium deposition, the production efficiency can be improved up to 50%. The process described here has surface muons focused onto a tungsten or palladium single crystal foil or aerogel (that can be heated up to 2000 Celsius) and partially covered by a cesium layer to provide a minimal work function. The negative muon ions can be extracted by a DC electric field and further accelerated by a linac and stripped in a thin foil. Charge exchange with a. dense flow of positive or negative ions is proposed for conversion of slow muonium atoms into positive and negative muonium ions