{"title":"施肥前粪肥厌氧消化对土壤氮素利用的影响?","authors":"B. Foereid, J. Szőcs, R. Patinvoh, I. S. Horváth","doi":"10.30486/IJROWA.2020.1897538.1055","DOIUrl":null,"url":null,"abstract":"Purpose Anaerobic digestion produces renewable energy, biogas, from organic residues, but also digestate, a valuable organic fertiliser. Previous studies have indicated that digestate contains ample plant available nitrogen (N), but there are also concerns about greenhouse gas (GHG) emissions after application of digestates to soil. The aim of this study was to compare digestate and undigested feedstock for fertiliser effect as well as greenhouse gas emissions during the next season. \nMethods Digestate and its feedstock, manure, were compared as N fertilisers for wheat. Mixing digestate with biochar before application was also tested. After harvest, soil samples were frozen and dried. Then GHG emissions immediately after a re-wetting of dry soil and after thawing of frozen soil were measured to determine emissions after a non-growing season (dry or cold). \nResults All N in digestate was plant available, while there was no significant N fertiliser effect of the undigested manure. N2O emissions were higher after a dry season than after freezing, but the undigested manure showed higher emissions during thawing than those detected during thawing of soils from any of the other treatments. \nConclusion Anaerobic digestion makes N available to plants, and when residues with much N that is not plant available the first season are used, the risk of N2O emission next spring is high.","PeriodicalId":14373,"journal":{"name":"International Journal Of Recycling of Organic Waste in Agriculture","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effect of anaerobic digestion of manure before application to soil – benefits for nitrogen utilisation?\",\"authors\":\"B. Foereid, J. Szőcs, R. Patinvoh, I. S. Horváth\",\"doi\":\"10.30486/IJROWA.2020.1897538.1055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose Anaerobic digestion produces renewable energy, biogas, from organic residues, but also digestate, a valuable organic fertiliser. Previous studies have indicated that digestate contains ample plant available nitrogen (N), but there are also concerns about greenhouse gas (GHG) emissions after application of digestates to soil. The aim of this study was to compare digestate and undigested feedstock for fertiliser effect as well as greenhouse gas emissions during the next season. \\nMethods Digestate and its feedstock, manure, were compared as N fertilisers for wheat. Mixing digestate with biochar before application was also tested. After harvest, soil samples were frozen and dried. Then GHG emissions immediately after a re-wetting of dry soil and after thawing of frozen soil were measured to determine emissions after a non-growing season (dry or cold). \\nResults All N in digestate was plant available, while there was no significant N fertiliser effect of the undigested manure. N2O emissions were higher after a dry season than after freezing, but the undigested manure showed higher emissions during thawing than those detected during thawing of soils from any of the other treatments. \\nConclusion Anaerobic digestion makes N available to plants, and when residues with much N that is not plant available the first season are used, the risk of N2O emission next spring is high.\",\"PeriodicalId\":14373,\"journal\":{\"name\":\"International Journal Of Recycling of Organic Waste in Agriculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal Of Recycling of Organic Waste in Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30486/IJROWA.2020.1897538.1055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal Of Recycling of Organic Waste in Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30486/IJROWA.2020.1897538.1055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effect of anaerobic digestion of manure before application to soil – benefits for nitrogen utilisation?
Purpose Anaerobic digestion produces renewable energy, biogas, from organic residues, but also digestate, a valuable organic fertiliser. Previous studies have indicated that digestate contains ample plant available nitrogen (N), but there are also concerns about greenhouse gas (GHG) emissions after application of digestates to soil. The aim of this study was to compare digestate and undigested feedstock for fertiliser effect as well as greenhouse gas emissions during the next season.
Methods Digestate and its feedstock, manure, were compared as N fertilisers for wheat. Mixing digestate with biochar before application was also tested. After harvest, soil samples were frozen and dried. Then GHG emissions immediately after a re-wetting of dry soil and after thawing of frozen soil were measured to determine emissions after a non-growing season (dry or cold).
Results All N in digestate was plant available, while there was no significant N fertiliser effect of the undigested manure. N2O emissions were higher after a dry season than after freezing, but the undigested manure showed higher emissions during thawing than those detected during thawing of soils from any of the other treatments.
Conclusion Anaerobic digestion makes N available to plants, and when residues with much N that is not plant available the first season are used, the risk of N2O emission next spring is high.
期刊介绍:
The International Journal of Recycling of Organic Waste in Agriculture is an open access journal that publishes high-quality solicited and unsolicited articles, in all areas of Recycling of organic waste including: -Solid waste reuse in agriculture -Waste water reuse in agriculture -Utilization of organic wastes: composting -Ways to reduce, reuse and recycle organic waste -Social and economic impact of reduction, reuse and recycling of organic waste in agriculture -Methods to raise the public awareness of recycling and reuse of organic waste in agriculture -Organic waste utilization in animal and poultry nutrition -Urban food waste composting