岩石弹性模拟作为一种在地震勘探尺度上分析弹性性质各向异性的方法

M. K. Savoyskaya, I. Bayuk
{"title":"岩石弹性模拟作为一种在地震勘探尺度上分析弹性性质各向异性的方法","authors":"M. K. Savoyskaya, I. Bayuk","doi":"10.32454/0016-7762-2022-64-2-18-23","DOIUrl":null,"url":null,"abstract":"Introduction. Reservoirs composed of thin layers with different elastic properties exhibit the anisotropy of elastic properties. Anisotropic environments are studied using special seismic positioning systems that require large financial and time resources. However, neglecting pronounced anisotropy leads to misinterpretation of the data. Evaluation of the degree of anisotropy of a thin-layer stratum allows researchers to determine whether anisotropy could be neglected by conditionally considering the stratum to be isotropic.Aim. To estimate the anisotropy of carbonate rocks on the scale of seismic surveys based on the data of geophysical well logging and petroelastic simulation.Materials and methods. Models of carbonate rocks with different characteristics of pore space were created based on the Berryman and Backus methods. For these models, an analysis of the degree of anisotropy by Thomsen parameters was carried out. Acoustic and density logging data of a well located in Western Siberia were used for comparison with actual data.Results. A numerical characteristic was found, the analysis of which helped to determine the significance of anisotropy before the application of the Backus method thus significantly reducing the number of necessary computational processes.Conclusion. The obtained parameter of the degree of rock heterogeneity correlates well with Thomsen parameters responsible for anisotropy, which indicates the possibility of its use for assessing the anisotropy of strata.","PeriodicalId":33343,"journal":{"name":"Izvestiia vysshikh uchebnykh zavedenii Geologiia i razvedka","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petroelastic simulation as a method for analysing the anisotropy of elastic properties on the scale of seismic surveys\",\"authors\":\"M. K. Savoyskaya, I. Bayuk\",\"doi\":\"10.32454/0016-7762-2022-64-2-18-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. Reservoirs composed of thin layers with different elastic properties exhibit the anisotropy of elastic properties. Anisotropic environments are studied using special seismic positioning systems that require large financial and time resources. However, neglecting pronounced anisotropy leads to misinterpretation of the data. Evaluation of the degree of anisotropy of a thin-layer stratum allows researchers to determine whether anisotropy could be neglected by conditionally considering the stratum to be isotropic.Aim. To estimate the anisotropy of carbonate rocks on the scale of seismic surveys based on the data of geophysical well logging and petroelastic simulation.Materials and methods. Models of carbonate rocks with different characteristics of pore space were created based on the Berryman and Backus methods. For these models, an analysis of the degree of anisotropy by Thomsen parameters was carried out. Acoustic and density logging data of a well located in Western Siberia were used for comparison with actual data.Results. A numerical characteristic was found, the analysis of which helped to determine the significance of anisotropy before the application of the Backus method thus significantly reducing the number of necessary computational processes.Conclusion. The obtained parameter of the degree of rock heterogeneity correlates well with Thomsen parameters responsible for anisotropy, which indicates the possibility of its use for assessing the anisotropy of strata.\",\"PeriodicalId\":33343,\"journal\":{\"name\":\"Izvestiia vysshikh uchebnykh zavedenii Geologiia i razvedka\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiia vysshikh uchebnykh zavedenii Geologiia i razvedka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32454/0016-7762-2022-64-2-18-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiia vysshikh uchebnykh zavedenii Geologiia i razvedka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32454/0016-7762-2022-64-2-18-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍。由不同弹性性质的薄层组成的储层表现出弹性性质的各向异性。利用特殊的地震定位系统研究各向异性环境,这需要大量的资金和时间资源。然而,忽视明显的各向异性会导致对数据的误解。通过评价薄层地层的各向异性程度,研究人员可以有条件地认为该地层是各向同性的,从而确定是否可以忽略各向异性。利用地球物理测井资料和岩石弹性模拟资料,在地震勘探尺度上估算碳酸盐岩的各向异性。材料和方法。基于Berryman和Backus方法,建立了具有不同孔隙空间特征的碳酸盐岩模型。对于这些模型,采用Thomsen参数对各向异性程度进行了分析。利用西伯利亚西部一口井的声波和密度测井资料与实际资料进行了对比。发现了一个数值特征,对其分析有助于在应用Backus方法之前确定各向异性的重要性,从而大大减少了必要的计算过程的数量。得到的岩石非均质度参数与负责各向异性的Thomsen参数具有较好的相关性,表明了将其用于评价地层各向异性的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Petroelastic simulation as a method for analysing the anisotropy of elastic properties on the scale of seismic surveys
Introduction. Reservoirs composed of thin layers with different elastic properties exhibit the anisotropy of elastic properties. Anisotropic environments are studied using special seismic positioning systems that require large financial and time resources. However, neglecting pronounced anisotropy leads to misinterpretation of the data. Evaluation of the degree of anisotropy of a thin-layer stratum allows researchers to determine whether anisotropy could be neglected by conditionally considering the stratum to be isotropic.Aim. To estimate the anisotropy of carbonate rocks on the scale of seismic surveys based on the data of geophysical well logging and petroelastic simulation.Materials and methods. Models of carbonate rocks with different characteristics of pore space were created based on the Berryman and Backus methods. For these models, an analysis of the degree of anisotropy by Thomsen parameters was carried out. Acoustic and density logging data of a well located in Western Siberia were used for comparison with actual data.Results. A numerical characteristic was found, the analysis of which helped to determine the significance of anisotropy before the application of the Backus method thus significantly reducing the number of necessary computational processes.Conclusion. The obtained parameter of the degree of rock heterogeneity correlates well with Thomsen parameters responsible for anisotropy, which indicates the possibility of its use for assessing the anisotropy of strata.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
30
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信