广义Kudryashov方程的李对称精确光学孤子

IF 0.7 Q2 MATHEMATICS
R. Ramaswamy, E. S. El-Shazly, M. S. Abdel Latif, A. Elsonbaty, A. H. Abdel Kader
{"title":"广义Kudryashov方程的李对称精确光学孤子","authors":"R. Ramaswamy, E. S. El-Shazly, M. S. Abdel Latif, A. Elsonbaty, A. H. Abdel Kader","doi":"10.1155/2023/2685547","DOIUrl":null,"url":null,"abstract":"In this article, we use Lie point symmetry analysis to extract some new optical soliton solutions for the generalized Kudryashov’s equation (GKE) with an arbitrary power nonlinearity. Using a traveling wave transformation, the GKE is transformed into a nonlinear second order ordinary differential equation (ODE). Using Lie point symmetry analysis, the nonlinear second-order ODE is reduced to a first-order ODE. This first-order ODE is solved in two cases to retrieve some new bright, dark, and kink soliton solutions of the GKE. These soliton solutions for the GKE are obtained here for the first time.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact Optical Solitons for Generalized Kudryashov’s Equation by Lie Symmetry Method\",\"authors\":\"R. Ramaswamy, E. S. El-Shazly, M. S. Abdel Latif, A. Elsonbaty, A. H. Abdel Kader\",\"doi\":\"10.1155/2023/2685547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we use Lie point symmetry analysis to extract some new optical soliton solutions for the generalized Kudryashov’s equation (GKE) with an arbitrary power nonlinearity. Using a traveling wave transformation, the GKE is transformed into a nonlinear second order ordinary differential equation (ODE). Using Lie point symmetry analysis, the nonlinear second-order ODE is reduced to a first-order ODE. This first-order ODE is solved in two cases to retrieve some new bright, dark, and kink soliton solutions of the GKE. These soliton solutions for the GKE are obtained here for the first time.\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2685547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2685547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用李点对称分析方法,对具有任意幂次非线性的广义Kudryashov方程(GKE)提取了一些新的光学孤子解。利用行波变换,将GKE变换成非线性二阶常微分方程(ODE)。利用李点对称分析,将非线性二阶ODE简化为一阶ODE。求解了两种情况下的一阶ODE,得到了GKE的亮孤子解、暗孤子解和扭结孤子解。本文首次得到了GKE的孤子解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact Optical Solitons for Generalized Kudryashov’s Equation by Lie Symmetry Method
In this article, we use Lie point symmetry analysis to extract some new optical soliton solutions for the generalized Kudryashov’s equation (GKE) with an arbitrary power nonlinearity. Using a traveling wave transformation, the GKE is transformed into a nonlinear second order ordinary differential equation (ODE). Using Lie point symmetry analysis, the nonlinear second-order ODE is reduced to a first-order ODE. This first-order ODE is solved in two cases to retrieve some new bright, dark, and kink soliton solutions of the GKE. These soliton solutions for the GKE are obtained here for the first time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信