C. Kecy, E. Peltzer, P. Walz, K. Headley, B. Herlien, W. Kirkwood, T. O 'reilly, K. Salamy, F. Shane, J. Schofield, P. Brewer
{"title":"富CO2海水分配系统的设计与开发","authors":"C. Kecy, E. Peltzer, P. Walz, K. Headley, B. Herlien, W. Kirkwood, T. O 'reilly, K. Salamy, F. Shane, J. Schofield, P. Brewer","doi":"10.23919/OCEANS.2011.6107095","DOIUrl":null,"url":null,"abstract":"The kinetics of the reaction that occurs when CO2 and seawater are in contact is a complex function of temperature, alkalinity, final pH and TCO2 which taken together determine the time required for complete equilibrium. This reaction is extremely important to the study of Ocean Acidification (OA) and is the critical technical driver in the Monterey Bay Aquarium Research Institute's (MBARI) Free Ocean CO2 Enrichment (FOCE) experiments. The deep water FOCE science experiments are conducted at depths beyond scuba diver reach and demand that a valid perturbation experiment operate at a stable yet naturally fluctuating lower pH condition and avoid large or rapid pH variation as well as incomplete reactions, when we expose an experimental region or sample. Therefore, the technical requirement is to create a CO2 source in situ that is stable and well controlled. After extensive research and experimentation MBARI has developed the ability to create an in situ source of CO2 enriched seawater (ESW) for distribution and subsequent use in an ocean acidification experiment. The system mates with FOCE, but can be used in conjunction with other CO2 experimental applications in deep water. The ESW system is completely standalone from FOCE.","PeriodicalId":19442,"journal":{"name":"OCEANS'11 MTS/IEEE KONA","volume":"1 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and development of the CO2 enriched Seawater Distribution System\",\"authors\":\"C. Kecy, E. Peltzer, P. Walz, K. Headley, B. Herlien, W. Kirkwood, T. O 'reilly, K. Salamy, F. Shane, J. Schofield, P. Brewer\",\"doi\":\"10.23919/OCEANS.2011.6107095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The kinetics of the reaction that occurs when CO2 and seawater are in contact is a complex function of temperature, alkalinity, final pH and TCO2 which taken together determine the time required for complete equilibrium. This reaction is extremely important to the study of Ocean Acidification (OA) and is the critical technical driver in the Monterey Bay Aquarium Research Institute's (MBARI) Free Ocean CO2 Enrichment (FOCE) experiments. The deep water FOCE science experiments are conducted at depths beyond scuba diver reach and demand that a valid perturbation experiment operate at a stable yet naturally fluctuating lower pH condition and avoid large or rapid pH variation as well as incomplete reactions, when we expose an experimental region or sample. Therefore, the technical requirement is to create a CO2 source in situ that is stable and well controlled. After extensive research and experimentation MBARI has developed the ability to create an in situ source of CO2 enriched seawater (ESW) for distribution and subsequent use in an ocean acidification experiment. The system mates with FOCE, but can be used in conjunction with other CO2 experimental applications in deep water. The ESW system is completely standalone from FOCE.\",\"PeriodicalId\":19442,\"journal\":{\"name\":\"OCEANS'11 MTS/IEEE KONA\",\"volume\":\"1 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS'11 MTS/IEEE KONA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/OCEANS.2011.6107095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS'11 MTS/IEEE KONA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS.2011.6107095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and development of the CO2 enriched Seawater Distribution System
The kinetics of the reaction that occurs when CO2 and seawater are in contact is a complex function of temperature, alkalinity, final pH and TCO2 which taken together determine the time required for complete equilibrium. This reaction is extremely important to the study of Ocean Acidification (OA) and is the critical technical driver in the Monterey Bay Aquarium Research Institute's (MBARI) Free Ocean CO2 Enrichment (FOCE) experiments. The deep water FOCE science experiments are conducted at depths beyond scuba diver reach and demand that a valid perturbation experiment operate at a stable yet naturally fluctuating lower pH condition and avoid large or rapid pH variation as well as incomplete reactions, when we expose an experimental region or sample. Therefore, the technical requirement is to create a CO2 source in situ that is stable and well controlled. After extensive research and experimentation MBARI has developed the ability to create an in situ source of CO2 enriched seawater (ESW) for distribution and subsequent use in an ocean acidification experiment. The system mates with FOCE, but can be used in conjunction with other CO2 experimental applications in deep water. The ESW system is completely standalone from FOCE.