超越土壤接种:蓝藻作为肥料的替代品

Nitrogen Pub Date : 2023-07-04 DOI:10.3390/nitrogen4030018
M. Massey, Jessica G. Davis
{"title":"超越土壤接种:蓝藻作为肥料的替代品","authors":"M. Massey, Jessica G. Davis","doi":"10.3390/nitrogen4030018","DOIUrl":null,"url":null,"abstract":"Nitrogen-fixing bacteria such as cyanobacteria have the capability to fix atmospheric nitrogen at ambient temperature and pressure, and intensive cultivation of cyanobacteria for fertilizer could lead to its use as an “environmentally friendly” replacement or supplement for nitrogen (N) fertilizer derived from the Haber–Bosch process. Prior research has focused on the use of N-fixing bacteria as a soil inoculum, and while this can improve crop yields, yield improvements are generally attributed to plant-growth-promoting substances produced by the bacteria, rather than to biological N fixation. The intensive cultivation of cyanobacteria in raceways or bioreactors can result in a fertilizer that provides N and organic carbon, as well as potentially similar growth-promoting substances observed in prior research work. On-farm or local production of cyanobacterial fertilizer could also circumvent infrastructure limitations, economic and geopolitical issues, and challenges in distribution and transport related to Haber–Bosch-derived N fertilizers. The use of cyanobacterial N fertilizer could have many agronomic and environmental advantages over N fertilizer derived from the Haber–Bosch process, but study of cyanobacteria as a replacement for other N fertilizers remains very limited. Scientific and practical challenges remain for this promising but as-yet unproven approach to maintaining or improving soil N fertility.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Beyond Soil Inoculation: Cyanobacteria as a Fertilizer Replacement\",\"authors\":\"M. Massey, Jessica G. Davis\",\"doi\":\"10.3390/nitrogen4030018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitrogen-fixing bacteria such as cyanobacteria have the capability to fix atmospheric nitrogen at ambient temperature and pressure, and intensive cultivation of cyanobacteria for fertilizer could lead to its use as an “environmentally friendly” replacement or supplement for nitrogen (N) fertilizer derived from the Haber–Bosch process. Prior research has focused on the use of N-fixing bacteria as a soil inoculum, and while this can improve crop yields, yield improvements are generally attributed to plant-growth-promoting substances produced by the bacteria, rather than to biological N fixation. The intensive cultivation of cyanobacteria in raceways or bioreactors can result in a fertilizer that provides N and organic carbon, as well as potentially similar growth-promoting substances observed in prior research work. On-farm or local production of cyanobacterial fertilizer could also circumvent infrastructure limitations, economic and geopolitical issues, and challenges in distribution and transport related to Haber–Bosch-derived N fertilizers. The use of cyanobacterial N fertilizer could have many agronomic and environmental advantages over N fertilizer derived from the Haber–Bosch process, but study of cyanobacteria as a replacement for other N fertilizers remains very limited. Scientific and practical challenges remain for this promising but as-yet unproven approach to maintaining or improving soil N fertility.\",\"PeriodicalId\":19365,\"journal\":{\"name\":\"Nitrogen\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nitrogen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/nitrogen4030018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nitrogen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nitrogen4030018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

像蓝藻这样的固氮细菌有能力在环境温度和压力下固定大气中的氮,而蓝藻的集约化培养可以使其成为一种“环境友好”的肥料,替代或补充来自Haber-Bosch工艺的氮肥。先前的研究主要集中在使用固氮细菌作为土壤接种剂,虽然这可以提高作物产量,但产量的提高通常归因于细菌产生的植物生长促进物质,而不是生物固氮。在跑道或生物反应器中集约化培养蓝藻可以产生提供氮和有机碳的肥料,以及在先前的研究工作中观察到的潜在的促进生长的物质。在农场或当地生产蓝藻肥料也可以绕过基础设施限制、经济和地缘政治问题,以及与哈伯-伯什衍生氮肥相关的分销和运输挑战。使用蓝藻氮肥可能比从Haber-Bosch工艺中获得的氮肥具有许多农艺和环境优势,但蓝藻作为其他氮肥替代品的研究仍然非常有限。这种有希望但尚未得到证实的维持或改善土壤氮肥力的方法在科学和实践方面仍然存在挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond Soil Inoculation: Cyanobacteria as a Fertilizer Replacement
Nitrogen-fixing bacteria such as cyanobacteria have the capability to fix atmospheric nitrogen at ambient temperature and pressure, and intensive cultivation of cyanobacteria for fertilizer could lead to its use as an “environmentally friendly” replacement or supplement for nitrogen (N) fertilizer derived from the Haber–Bosch process. Prior research has focused on the use of N-fixing bacteria as a soil inoculum, and while this can improve crop yields, yield improvements are generally attributed to plant-growth-promoting substances produced by the bacteria, rather than to biological N fixation. The intensive cultivation of cyanobacteria in raceways or bioreactors can result in a fertilizer that provides N and organic carbon, as well as potentially similar growth-promoting substances observed in prior research work. On-farm or local production of cyanobacterial fertilizer could also circumvent infrastructure limitations, economic and geopolitical issues, and challenges in distribution and transport related to Haber–Bosch-derived N fertilizers. The use of cyanobacterial N fertilizer could have many agronomic and environmental advantages over N fertilizer derived from the Haber–Bosch process, but study of cyanobacteria as a replacement for other N fertilizers remains very limited. Scientific and practical challenges remain for this promising but as-yet unproven approach to maintaining or improving soil N fertility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信