南方天空MWA快速两米(SMART)脉冲星调查- ii。调查状态,脉冲星普查,和第一个脉冲星的发现

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
N. Bhat, N. A. Swainston, S. McSweeney, M. Xue, B. W. Meyers, S. Kudale, S. Dai, S. Tremblay, W. van Straten, R. Shannon, K. R. Smith, M. Sokolowski, S. Ord, G. Sleap, A. Williams, P. Hancock, R. Lange, J. Tocknell, M. Johnston-Hollitt, D. Kaplan, S. Tingay, M. Walker
{"title":"南方天空MWA快速两米(SMART)脉冲星调查- ii。调查状态,脉冲星普查,和第一个脉冲星的发现","authors":"N. Bhat, N. A. Swainston, S. McSweeney, M. Xue, B. W. Meyers, S. Kudale, S. Dai, S. Tremblay, W. van Straten, R. Shannon, K. R. Smith, M. Sokolowski, S. Ord, G. Sleap, A. Williams, P. Hancock, R. Lange, J. Tocknell, M. Johnston-Hollitt, D. Kaplan, S. Tingay, M. Walker","doi":"10.1017/pasa.2023.18","DOIUrl":null,"url":null,"abstract":"Abstract In Paper I, we presented an overview of the Southern-sky MWA Rapid Two-metre (SMART) survey, including the survey design and search pipeline. While the combination of MWA’s large field-of-view and the voltage capture system brings a survey speed of \n${\\sim} 450\\, {\\textrm{deg}}^{2}\\,\\textrm{h}^{-1}$\n , the progression of the survey relies on the availability of compact configuration of the Phase II array. Over the past few years, by taking advantage of multiple windows of opportunity when the compact configuration was available, we have advanced the survey to 75% of the planned sky coverage. To date, about 10% of the data collected thus far have been processed for a first-pass search, where 10 min of observation is processed for dispersion measures out to 250 \n${\\textrm{pc cm}}^{-3}$\n , to realise a shallow survey that is largely sensitive to long-period pulsars. The ongoing analysis has led to two new pulsar discoveries, as well as an independent discovery and a rediscovery of a previously incorrectly characterised pulsar, all from \n${\\sim} 3\\% $\n of the data for which candidate scrutiny is completed. In this sequel to Paper I, we describe the strategies for further detailed follow-up including improved sky localisation and convergence to timing solution, and illustrate them using example pulsar discoveries. The processing has also led to re-detection of 120 pulsars in the SMART observing band, bringing the total number of pulsars detected to date with the MWA to 180, and these are used to assess the search sensitivity of current processing pipelines. The planned second-pass (deep survey) processing is expected to yield a three-fold increase in sensitivity for long-period pulsars, and a substantial improvement to millisecond pulsars by adopting optimal de-dispersion plans. The SMART survey will complement the highly successful Parkes High Time Resolution Universe survey at 1.2–1.5 GHz, and inform future large survey efforts such as those planned with the low-frequency Square Kilometre Array (SKA-Low).","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Southern-sky MWA Rapid Two-metre (SMART) pulsar survey—II. Survey status, pulsar census, and first pulsar discoveries\",\"authors\":\"N. Bhat, N. A. Swainston, S. McSweeney, M. Xue, B. W. Meyers, S. Kudale, S. Dai, S. Tremblay, W. van Straten, R. Shannon, K. R. Smith, M. Sokolowski, S. Ord, G. Sleap, A. Williams, P. Hancock, R. Lange, J. Tocknell, M. Johnston-Hollitt, D. Kaplan, S. Tingay, M. Walker\",\"doi\":\"10.1017/pasa.2023.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In Paper I, we presented an overview of the Southern-sky MWA Rapid Two-metre (SMART) survey, including the survey design and search pipeline. While the combination of MWA’s large field-of-view and the voltage capture system brings a survey speed of \\n${\\\\sim} 450\\\\, {\\\\textrm{deg}}^{2}\\\\,\\\\textrm{h}^{-1}$\\n , the progression of the survey relies on the availability of compact configuration of the Phase II array. Over the past few years, by taking advantage of multiple windows of opportunity when the compact configuration was available, we have advanced the survey to 75% of the planned sky coverage. To date, about 10% of the data collected thus far have been processed for a first-pass search, where 10 min of observation is processed for dispersion measures out to 250 \\n${\\\\textrm{pc cm}}^{-3}$\\n , to realise a shallow survey that is largely sensitive to long-period pulsars. The ongoing analysis has led to two new pulsar discoveries, as well as an independent discovery and a rediscovery of a previously incorrectly characterised pulsar, all from \\n${\\\\sim} 3\\\\% $\\n of the data for which candidate scrutiny is completed. In this sequel to Paper I, we describe the strategies for further detailed follow-up including improved sky localisation and convergence to timing solution, and illustrate them using example pulsar discoveries. The processing has also led to re-detection of 120 pulsars in the SMART observing band, bringing the total number of pulsars detected to date with the MWA to 180, and these are used to assess the search sensitivity of current processing pipelines. The planned second-pass (deep survey) processing is expected to yield a three-fold increase in sensitivity for long-period pulsars, and a substantial improvement to millisecond pulsars by adopting optimal de-dispersion plans. The SMART survey will complement the highly successful Parkes High Time Resolution Universe survey at 1.2–1.5 GHz, and inform future large survey efforts such as those planned with the low-frequency Square Kilometre Array (SKA-Low).\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/pasa.2023.18\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/pasa.2023.18","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文介绍了南天MWA快速两米(SMART)巡天的概况,包括巡天设计和搜索管道。虽然MWA的大视场和电压捕获系统的结合带来了${\sim} 450\, {\textrm{deg}}^{2}\,\textrm{h}^{-1}$的调查速度,但调查的进展依赖于第二阶段阵列紧凑配置的可用性。在过去的几年里,通过利用紧凑配置的多个机会窗口,我们将调查范围扩大到计划天空覆盖范围的75%。迄今为止,收集到的大约10%的数据已经被处理用于第一次搜索,其中10分钟的观测被处理为色散测量到250 ${\textrm{pc cm}}^{-3}$,以实现对长周期脉冲星非常敏感的浅层调查。正在进行的分析导致了两个新的脉冲星的发现,以及一个独立的发现和一个先前被错误描述的脉冲星的重新发现,所有这些都来自于完成候选审查的数据的3%。在这篇论文I的续文中,我们描述了进一步详细跟进的策略,包括改进的天空定位和收敛到定时解决方案,并使用脉冲星发现的例子来说明它们。该处理还导致在SMART观测波段重新探测到120颗脉冲星,使MWA迄今探测到的脉冲星总数达到180颗,这些被用于评估当前处理管道的搜索灵敏度。计划中的二次巡天(深度巡天)处理预计将使长周期脉冲星的灵敏度提高三倍,并通过采用最佳去色散计划大幅提高毫秒脉冲星的灵敏度。SMART调查将补充非常成功的帕克斯1.2-1.5 GHz高时间分辨率宇宙调查,并为未来的大型调查工作提供信息,例如那些计划使用低频平方公里阵列(SKA-Low)的调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Southern-sky MWA Rapid Two-metre (SMART) pulsar survey—II. Survey status, pulsar census, and first pulsar discoveries
Abstract In Paper I, we presented an overview of the Southern-sky MWA Rapid Two-metre (SMART) survey, including the survey design and search pipeline. While the combination of MWA’s large field-of-view and the voltage capture system brings a survey speed of ${\sim} 450\, {\textrm{deg}}^{2}\,\textrm{h}^{-1}$ , the progression of the survey relies on the availability of compact configuration of the Phase II array. Over the past few years, by taking advantage of multiple windows of opportunity when the compact configuration was available, we have advanced the survey to 75% of the planned sky coverage. To date, about 10% of the data collected thus far have been processed for a first-pass search, where 10 min of observation is processed for dispersion measures out to 250 ${\textrm{pc cm}}^{-3}$ , to realise a shallow survey that is largely sensitive to long-period pulsars. The ongoing analysis has led to two new pulsar discoveries, as well as an independent discovery and a rediscovery of a previously incorrectly characterised pulsar, all from ${\sim} 3\% $ of the data for which candidate scrutiny is completed. In this sequel to Paper I, we describe the strategies for further detailed follow-up including improved sky localisation and convergence to timing solution, and illustrate them using example pulsar discoveries. The processing has also led to re-detection of 120 pulsars in the SMART observing band, bringing the total number of pulsars detected to date with the MWA to 180, and these are used to assess the search sensitivity of current processing pipelines. The planned second-pass (deep survey) processing is expected to yield a three-fold increase in sensitivity for long-period pulsars, and a substantial improvement to millisecond pulsars by adopting optimal de-dispersion plans. The SMART survey will complement the highly successful Parkes High Time Resolution Universe survey at 1.2–1.5 GHz, and inform future large survey efforts such as those planned with the low-frequency Square Kilometre Array (SKA-Low).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信