γ-Ricker映射的分岔结构及其尖点组织

J. Rocha, A. Taha
{"title":"γ-Ricker映射的分岔结构及其尖点组织","authors":"J. Rocha, A. Taha","doi":"10.1142/s0218127423300112","DOIUrl":null,"url":null,"abstract":"This paper aims to study the bifurcation structures of the homographic [Formula: see text]-Ricker maps in a four-dimensional parameter space. The generalized Lambert [Formula: see text] functions are used to establish upper bounds for the number of fixed points of these population growth models. The variation of the number of fixed points and the cusp points organization is stipulated. This study also observes a vital characteristic on the Allee effect phenomenon in a class of bimodal Allee’s maps. Some numerical studies are included to illustrate the Allee effect and big bang local bifurcations.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation Structures of the Homographic γ-Ricker Maps and Their Cusp Points Organization\",\"authors\":\"J. Rocha, A. Taha\",\"doi\":\"10.1142/s0218127423300112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to study the bifurcation structures of the homographic [Formula: see text]-Ricker maps in a four-dimensional parameter space. The generalized Lambert [Formula: see text] functions are used to establish upper bounds for the number of fixed points of these population growth models. The variation of the number of fixed points and the cusp points organization is stipulated. This study also observes a vital characteristic on the Allee effect phenomenon in a class of bimodal Allee’s maps. Some numerical studies are included to illustrate the Allee effect and big bang local bifurcations.\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127423300112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423300112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究四维参数空间中同列[公式:见文]-Ricker映射的分岔结构。用广义兰伯特[公式:见文]函数来建立这些人口增长模型的不动点数目的上界。规定了不动点数目的变化和尖点组织。本文还观察到一类双峰Allee图的Allee效应现象的一个重要特征。文中还包括一些数值研究来说明Allee效应和大爆炸局部分岔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation Structures of the Homographic γ-Ricker Maps and Their Cusp Points Organization
This paper aims to study the bifurcation structures of the homographic [Formula: see text]-Ricker maps in a four-dimensional parameter space. The generalized Lambert [Formula: see text] functions are used to establish upper bounds for the number of fixed points of these population growth models. The variation of the number of fixed points and the cusp points organization is stipulated. This study also observes a vital characteristic on the Allee effect phenomenon in a class of bimodal Allee’s maps. Some numerical studies are included to illustrate the Allee effect and big bang local bifurcations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信