Eduardo Vitral, S. Mukherjee, P. Leo, J. Viñals, M. Paul, Zhi-Feng Huang
{"title":"rayleigh - bassanard对流中的螺旋缺陷混沌:由旋转螺旋引起的方位角流动的渐近和数值研究","authors":"Eduardo Vitral, S. Mukherjee, P. Leo, J. Viñals, M. Paul, Zhi-Feng Huang","doi":"10.1103/physrevfluids.5.093501","DOIUrl":null,"url":null,"abstract":"Rotating spiral patterns in Rayleigh-Benard convection are known to induce azimuthal flows, which raises the question of how different neighboring spirals interact with each other in spiral chaos, and the role of hydrodynamics in this regime. Far from the core, we show that spiral rotations lead to an azimuthal body force that is irrotational and of magnitude proportional to the topological index of the spiral and its angular frequency. The force, although irrotational, cannot be included in the pressure field as it would lead to a nonphysical, multivalued pressure. We calculate the asymptotic dependence of the resulting flow, and show that it leads to a logarithmic dependence of the azimuthal velocity on distance r away from the spiral core in the limit of negligible damping coefficient. This solution dampens to approximately $1/r$ when accounting for no-slip boundary conditions for the convection cell's plate. This flow component can provide additional hydrodynamic interactions among spirals including those observed in spiral defect chaos. We show that the analytic prediction for the azimuthal velocity agrees with numerical results obtained from both two-dimensional generalized Swift-Hohenberg and three-dimensional Boussinesq models, and find that the velocity field is affected by the size and charges of neighboring spirals. Numerically, we identify a correlation between the appearance of spiral defect chaos and the balancing between the mean-flow advection and the diffusive dynamics related to roll unwinding.","PeriodicalId":8472,"journal":{"name":"arXiv: Soft Condensed Matter","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spiral defect chaos in Rayleigh-Bénard convection: Asymptotic and numerical studies of azimuthal flows induced by rotating spirals\",\"authors\":\"Eduardo Vitral, S. Mukherjee, P. Leo, J. Viñals, M. Paul, Zhi-Feng Huang\",\"doi\":\"10.1103/physrevfluids.5.093501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rotating spiral patterns in Rayleigh-Benard convection are known to induce azimuthal flows, which raises the question of how different neighboring spirals interact with each other in spiral chaos, and the role of hydrodynamics in this regime. Far from the core, we show that spiral rotations lead to an azimuthal body force that is irrotational and of magnitude proportional to the topological index of the spiral and its angular frequency. The force, although irrotational, cannot be included in the pressure field as it would lead to a nonphysical, multivalued pressure. We calculate the asymptotic dependence of the resulting flow, and show that it leads to a logarithmic dependence of the azimuthal velocity on distance r away from the spiral core in the limit of negligible damping coefficient. This solution dampens to approximately $1/r$ when accounting for no-slip boundary conditions for the convection cell's plate. This flow component can provide additional hydrodynamic interactions among spirals including those observed in spiral defect chaos. We show that the analytic prediction for the azimuthal velocity agrees with numerical results obtained from both two-dimensional generalized Swift-Hohenberg and three-dimensional Boussinesq models, and find that the velocity field is affected by the size and charges of neighboring spirals. Numerically, we identify a correlation between the appearance of spiral defect chaos and the balancing between the mean-flow advection and the diffusive dynamics related to roll unwinding.\",\"PeriodicalId\":8472,\"journal\":{\"name\":\"arXiv: Soft Condensed Matter\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Soft Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevfluids.5.093501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevfluids.5.093501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spiral defect chaos in Rayleigh-Bénard convection: Asymptotic and numerical studies of azimuthal flows induced by rotating spirals
Rotating spiral patterns in Rayleigh-Benard convection are known to induce azimuthal flows, which raises the question of how different neighboring spirals interact with each other in spiral chaos, and the role of hydrodynamics in this regime. Far from the core, we show that spiral rotations lead to an azimuthal body force that is irrotational and of magnitude proportional to the topological index of the spiral and its angular frequency. The force, although irrotational, cannot be included in the pressure field as it would lead to a nonphysical, multivalued pressure. We calculate the asymptotic dependence of the resulting flow, and show that it leads to a logarithmic dependence of the azimuthal velocity on distance r away from the spiral core in the limit of negligible damping coefficient. This solution dampens to approximately $1/r$ when accounting for no-slip boundary conditions for the convection cell's plate. This flow component can provide additional hydrodynamic interactions among spirals including those observed in spiral defect chaos. We show that the analytic prediction for the azimuthal velocity agrees with numerical results obtained from both two-dimensional generalized Swift-Hohenberg and three-dimensional Boussinesq models, and find that the velocity field is affected by the size and charges of neighboring spirals. Numerically, we identify a correlation between the appearance of spiral defect chaos and the balancing between the mean-flow advection and the diffusive dynamics related to roll unwinding.