自恢复扩展卡尔曼滤波器用于频率跟踪

J. Pak, C. Ahn, M. Lim
{"title":"自恢复扩展卡尔曼滤波器用于频率跟踪","authors":"J. Pak, C. Ahn, M. Lim","doi":"10.1109/ICCAS.2015.7364945","DOIUrl":null,"url":null,"abstract":"This paper proposes a new nonlinear filtering algorithm called the self-recovering extended Kalman filter (SREKF). In the SREKF algorithm, the EKF's failure or abnormal operation is automatically diagnosed. When the failure is diagnosed, an assisting filter, a nonlinear finite impulse response (FIR) filter, is operated. Using the output of the nonlinear FIR filter, the EKF is reset and rebooted. In this way, the SREKF can self-recover from failures. The SREKF is applied to a frequency tracking problem for demonstration of its effectiveness.","PeriodicalId":6641,"journal":{"name":"2015 15th International Conference on Control, Automation and Systems (ICCAS)","volume":"166 1","pages":"389-392"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-recovering extended Kalman filter for frequency tracking\",\"authors\":\"J. Pak, C. Ahn, M. Lim\",\"doi\":\"10.1109/ICCAS.2015.7364945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new nonlinear filtering algorithm called the self-recovering extended Kalman filter (SREKF). In the SREKF algorithm, the EKF's failure or abnormal operation is automatically diagnosed. When the failure is diagnosed, an assisting filter, a nonlinear finite impulse response (FIR) filter, is operated. Using the output of the nonlinear FIR filter, the EKF is reset and rebooted. In this way, the SREKF can self-recover from failures. The SREKF is applied to a frequency tracking problem for demonstration of its effectiveness.\",\"PeriodicalId\":6641,\"journal\":{\"name\":\"2015 15th International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"166 1\",\"pages\":\"389-392\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2015.7364945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2015.7364945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的非线性滤波算法——自恢复扩展卡尔曼滤波(SREKF)。在SREKF算法中,自动诊断EKF的故障或异常运行。当故障被诊断时,一个辅助滤波器,一个非线性有限脉冲响应(FIR)滤波器被操作。利用非线性FIR滤波器的输出,EKF复位并重新启动。通过这种方式,SREKF可以从故障中自我恢复。将SREKF应用于频率跟踪问题,以验证其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-recovering extended Kalman filter for frequency tracking
This paper proposes a new nonlinear filtering algorithm called the self-recovering extended Kalman filter (SREKF). In the SREKF algorithm, the EKF's failure or abnormal operation is automatically diagnosed. When the failure is diagnosed, an assisting filter, a nonlinear finite impulse response (FIR) filter, is operated. Using the output of the nonlinear FIR filter, the EKF is reset and rebooted. In this way, the SREKF can self-recover from failures. The SREKF is applied to a frequency tracking problem for demonstration of its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信