Samira Rashidian, M. Derakhshan, E. Aryan, Roghayeh Teimourpour, Aida Gholoobi, Z. Meshkat
{"title":"结核分枝杆菌ag85a与tb10.4融合基因DNA疫苗的设计与构建","authors":"Samira Rashidian, M. Derakhshan, E. Aryan, Roghayeh Teimourpour, Aida Gholoobi, Z. Meshkat","doi":"10.22037/AMLS.V3I1.16982","DOIUrl":null,"url":null,"abstract":"Background and Aim : Novel TB vaccines that aim to boost and/or replace Bacillus Calmette-Guerin (BCG) are currently in development. DNA vaccines can stimulate both humoral and cell-mediated immunity in different animal models of TB and is thought to be a promising strategy in the development of new vaccines against TB. The aim of this study was to design and construct a DNA vaccine encoding ag85a and tb10.4 fusion genes of Mycobacterium tuberculosis . Materials and Methods: Tb10.4 fragment was amplified by PCR and the products were digested with restriction enzymes. Next, it was cloned into the pcDNA3.1 + plasmid. The ag85a gene and pcDNA3.1 + / tb10.4 plasmid were digested by EcoRI and BamH1 restriction enzymes. Eukaryotic cells were transfected with pcDNA3.1 + / tb10.4 - ag85a plasmid for confirming expression of tb10.4 - ag85a in these cells. Results: Using electrophoresis of PCR products, fragments 297 bp for tb10.4 and 1017 bp for ag85a were observed. Eukaryotic cells transfection with pcDNA3.1 + / tb10.4 - ag85a vector was confirmed with cDNA synthesis and existence of tb10.4-ag85a was confirmed with RT-PCR. Conclusion: In this study, we constructed a DNA vaccine encoding tb10.4-ag85a fusion fragment. It can be used for development of more new DNA vaccines in future studies .","PeriodicalId":18401,"journal":{"name":"Medical laboratory sciences","volume":"125 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Designing and construction of a DNA vaccine encoding ag85a and tb10.4 fusion genes of Mycobacterium tuberculosis\",\"authors\":\"Samira Rashidian, M. Derakhshan, E. Aryan, Roghayeh Teimourpour, Aida Gholoobi, Z. Meshkat\",\"doi\":\"10.22037/AMLS.V3I1.16982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background and Aim : Novel TB vaccines that aim to boost and/or replace Bacillus Calmette-Guerin (BCG) are currently in development. DNA vaccines can stimulate both humoral and cell-mediated immunity in different animal models of TB and is thought to be a promising strategy in the development of new vaccines against TB. The aim of this study was to design and construct a DNA vaccine encoding ag85a and tb10.4 fusion genes of Mycobacterium tuberculosis . Materials and Methods: Tb10.4 fragment was amplified by PCR and the products were digested with restriction enzymes. Next, it was cloned into the pcDNA3.1 + plasmid. The ag85a gene and pcDNA3.1 + / tb10.4 plasmid were digested by EcoRI and BamH1 restriction enzymes. Eukaryotic cells were transfected with pcDNA3.1 + / tb10.4 - ag85a plasmid for confirming expression of tb10.4 - ag85a in these cells. Results: Using electrophoresis of PCR products, fragments 297 bp for tb10.4 and 1017 bp for ag85a were observed. Eukaryotic cells transfection with pcDNA3.1 + / tb10.4 - ag85a vector was confirmed with cDNA synthesis and existence of tb10.4-ag85a was confirmed with RT-PCR. Conclusion: In this study, we constructed a DNA vaccine encoding tb10.4-ag85a fusion fragment. It can be used for development of more new DNA vaccines in future studies .\",\"PeriodicalId\":18401,\"journal\":{\"name\":\"Medical laboratory sciences\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical laboratory sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22037/AMLS.V3I1.16982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical laboratory sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22037/AMLS.V3I1.16982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing and construction of a DNA vaccine encoding ag85a and tb10.4 fusion genes of Mycobacterium tuberculosis
Background and Aim : Novel TB vaccines that aim to boost and/or replace Bacillus Calmette-Guerin (BCG) are currently in development. DNA vaccines can stimulate both humoral and cell-mediated immunity in different animal models of TB and is thought to be a promising strategy in the development of new vaccines against TB. The aim of this study was to design and construct a DNA vaccine encoding ag85a and tb10.4 fusion genes of Mycobacterium tuberculosis . Materials and Methods: Tb10.4 fragment was amplified by PCR and the products were digested with restriction enzymes. Next, it was cloned into the pcDNA3.1 + plasmid. The ag85a gene and pcDNA3.1 + / tb10.4 plasmid were digested by EcoRI and BamH1 restriction enzymes. Eukaryotic cells were transfected with pcDNA3.1 + / tb10.4 - ag85a plasmid for confirming expression of tb10.4 - ag85a in these cells. Results: Using electrophoresis of PCR products, fragments 297 bp for tb10.4 and 1017 bp for ag85a were observed. Eukaryotic cells transfection with pcDNA3.1 + / tb10.4 - ag85a vector was confirmed with cDNA synthesis and existence of tb10.4-ag85a was confirmed with RT-PCR. Conclusion: In this study, we constructed a DNA vaccine encoding tb10.4-ag85a fusion fragment. It can be used for development of more new DNA vaccines in future studies .