论异步转账系统中的支付通道

O. Naor, I. Keidar
{"title":"论异步转账系统中的支付通道","authors":"O. Naor, I. Keidar","doi":"10.4230/LIPIcs.DISC.2022.29","DOIUrl":null,"url":null,"abstract":"Money transfer is an abstraction that realizes the core of cryptocurrencies. It has been shown that, contrary to common belief, money transfer in the presence of Byzantine faults can be implemented in asynchronous networks and does not require consensus. Nonetheless, existing implementations of money transfer still require a quadratic message complexity per payment, making attempts to scale hard. In common blockchains, such as Bitcoin and Ethereum, this cost is mitigated by payment channels implemented as a second layer on top of the blockchain allowing to make many off-chain payments between two users who share a channel. Such channels only require on-chain transactions for channel opening and closing, while the intermediate payments are done off-chain with constant message complexity. But payment channels in-use today require synchrony, therefore they are inadequate for asynchronous money transfer systems. In this paper, we provide a series of possibility and impossibility results for payment channels in asynchronous money transfer systems. We first prove a quadratic lower bound on the message complexity of on-chain transfers. Then, we explore two types of payment channels, unidirectional and bidirectional. We define them as shared memory abstractions and prove that in certain cases they can be implemented as a second layer on top of an asynchronous money transfer system whereas in other cases it is impossible.","PeriodicalId":89463,"journal":{"name":"Proceedings of the ... International Symposium on High Performance Distributed Computing","volume":"11 1","pages":"29:1-29:20"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On Payment Channels in Asynchronous Money Transfer Systems\",\"authors\":\"O. Naor, I. Keidar\",\"doi\":\"10.4230/LIPIcs.DISC.2022.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Money transfer is an abstraction that realizes the core of cryptocurrencies. It has been shown that, contrary to common belief, money transfer in the presence of Byzantine faults can be implemented in asynchronous networks and does not require consensus. Nonetheless, existing implementations of money transfer still require a quadratic message complexity per payment, making attempts to scale hard. In common blockchains, such as Bitcoin and Ethereum, this cost is mitigated by payment channels implemented as a second layer on top of the blockchain allowing to make many off-chain payments between two users who share a channel. Such channels only require on-chain transactions for channel opening and closing, while the intermediate payments are done off-chain with constant message complexity. But payment channels in-use today require synchrony, therefore they are inadequate for asynchronous money transfer systems. In this paper, we provide a series of possibility and impossibility results for payment channels in asynchronous money transfer systems. We first prove a quadratic lower bound on the message complexity of on-chain transfers. Then, we explore two types of payment channels, unidirectional and bidirectional. We define them as shared memory abstractions and prove that in certain cases they can be implemented as a second layer on top of an asynchronous money transfer system whereas in other cases it is impossible.\",\"PeriodicalId\":89463,\"journal\":{\"name\":\"Proceedings of the ... International Symposium on High Performance Distributed Computing\",\"volume\":\"11 1\",\"pages\":\"29:1-29:20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Symposium on High Performance Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.DISC.2022.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Symposium on High Performance Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.DISC.2022.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

货币转账是实现加密货币核心的一种抽象。研究表明,与普遍看法相反,存在拜占庭故障的资金转移可以在异步网络中实现,并且不需要共识。尽管如此,现有的资金转移实现仍然需要每次支付的二次消息复杂性,这使得尝试扩展变得困难。在常见的区块链中,如比特币和以太坊,通过在区块链之上实施的第二层支付通道来减轻这种成本,允许在共享通道的两个用户之间进行许多链下支付。这些通道只需要链上交易来打开和关闭通道,而中间支付是在链下完成的,具有恒定的消息复杂性。但目前使用的支付通道需要同步,因此它们不适合异步汇款系统。本文给出了异步转账系统中支付通道的一系列可能性和不可能性结果。我们首先证明了链上传输的消息复杂度的二次下界。然后,我们探索了单向和双向两种支付渠道。我们将它们定义为共享内存抽象,并证明在某些情况下它们可以作为异步转账系统之上的第二层来实现,而在其他情况下则不可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Payment Channels in Asynchronous Money Transfer Systems
Money transfer is an abstraction that realizes the core of cryptocurrencies. It has been shown that, contrary to common belief, money transfer in the presence of Byzantine faults can be implemented in asynchronous networks and does not require consensus. Nonetheless, existing implementations of money transfer still require a quadratic message complexity per payment, making attempts to scale hard. In common blockchains, such as Bitcoin and Ethereum, this cost is mitigated by payment channels implemented as a second layer on top of the blockchain allowing to make many off-chain payments between two users who share a channel. Such channels only require on-chain transactions for channel opening and closing, while the intermediate payments are done off-chain with constant message complexity. But payment channels in-use today require synchrony, therefore they are inadequate for asynchronous money transfer systems. In this paper, we provide a series of possibility and impossibility results for payment channels in asynchronous money transfer systems. We first prove a quadratic lower bound on the message complexity of on-chain transfers. Then, we explore two types of payment channels, unidirectional and bidirectional. We define them as shared memory abstractions and prove that in certain cases they can be implemented as a second layer on top of an asynchronous money transfer system whereas in other cases it is impossible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信